Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaics from any semiconductor

27.07.2012
Berkeley Lab technology could open door to more widespread solar energy devices

A technology that would enable low-cost, high efficiency solar cells to be made from virtually any semiconductor material has been developed by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.


The SFPV technology was tested for two top electrode architectures: (A) the top electrode is shaped into narrow fingers; (B) top electrode is uniformly ultrathin.

Credit: (Image courtesy of Berkeley Lab)

This technology opens the door to the use of plentiful, relatively inexpensive semiconductors, such as the promising metal oxides, sulfides and phosphides, that have been considered unsuitable for solar cells because it is so difficult to taylor their properties by chemical means.

"It's time we put bad materials to good use," says physicist Alex Zettl, who led this research along with colleague Feng Wang. "Our technology allows us to sidestep the difficulty in chemically tailoring many earth abundant, non-toxic semiconductors and instead tailor these materials simply by applying an electric field."

Zettl, who holds joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley's Physics Department where he directs the Center of Integrated Nanomechanical Systems (COINS), is the corresponding author of a paper describing this work in the journal Nano Letters. The paper is titled "Screening-Engineered Field-Effect Solar Cells." Co-authoring it were William Regan, Steven Byrnes, Will Gannett, Onur Ergen, Oscar Vazquez-Mena and Feng Wang.

Solar cells convert sunlight into electricity using semiconductor materials that exhibit the photovoltaic effect – meaning they absorb photons and release electrons that can be channeled into an electrical current. Photovoltaics are the ultimate source of clean, green and renewable energy but today's technologies utilize relatively scarce and expensive semiconductors, such as large crystals of silicon, or thin films of cadmium telluride or copper indium gallium selenide, that are tricky or expensive to fabricate into devices.

"Solar technologies today face a cost-to-efficiency trade-off that has slowed widespread implementation," Zettl says. "Our technology reduces the cost and complexity of fabricating solar cells and thereby provides what could be an important cost-effective and environmentally friendly alternative that would accelerate the usage of solar energy."

This new technology is called "screening-engineered field-effect photovoltaics," or SFPV, because it utilizes the electric field effect, a well understood phenomenon by which the concentration of charge-carriers in a semiconductor is altered by the application of an electric field. With the SFPV technology, a carefully designed partially screening top electrode lets the gate electric field sufficiently penetrate the electrode and more uniformly modulate the semiconductor carrier concentration and type to induce a p-n junction. This enables the creation of high quality p-n junctions in semiconductors that are difficult if not impossible to dope by conventional chemical methods.

"Our technology requires only electrode and gate deposition, without the need for high-temperature chemical doping, ion implantation, or other expensive or damaging processes," says lead author William Regan. "The key to our success is the minimal screening of the gate field which is achieved through geometric structuring of the top electrode. This makes it possible for electrical contact to and carrier modulation of the semiconductor to be performed simultaneously."

Under the SFPV system, the architecture of the top electrode is structured so that at least one of the electrode's dimensions is confined. In one configuration, working with copper oxide, the Berkeley researchers shaped the electrode contact into narrow fingers; in another configuration, working with silicon, they made the top contact ultra-thin (single layer graphene) across the surface. With sufficiently narrow fingers, the gate field creates a low electrical resistance inversion layer between the fingers and a potential barrier beneath them. A uniformly thin top contact allows gate fields to penetrate and deplete/invert the underlying semiconductor. The results in both configurations are high quality p-n junctions.

Says co-author Feng Wang, "Our demonstrations show that a stable, electrically contacted p-n junction can be achieved with nearly any semiconductor and any electrode material through the application of a gate field provided that the electrode is appropriately geometrically structured."

The researchers also demonstrated the SFPV effect in a self-gating configuration, in which the gate was powered internally by the electrical activity of the cell itself.

"The self-gating configuration eliminates the need for an external gate power source, which will simplify the practical implementation of SFPV devices," Regan says. "Additionally, the gate can serve a dual role as an antireflection coating, a feature already common and necessary for high efficiency photovoltaics."

This research was supported in part by the DOE Office of Science and in part by the National Science Foundation.

Lawrence Berkeley National Laboratory (Berkeley Lab) addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>