Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaic systems that adapt to the climate – subject of Austrian lead project research

03.12.2015

In Infinity, an Austrian lead project, researchers are working on a new generation of photovoltaic Systems. Its aim is to adapt the entire photovoltaic system, including the materials, components and processes involved, to the requirements in different climates and regions. The project unites leading partners in science and industry.

Technology minister Alois Stöger: “Research and development is an important strategic factor in expanding renewable energies and achieving global climate protection goals. As effective climate policy needs innovative energy technologies, Austrian solar expertise is in demand on the global market. We therefore trust the Infinity project will continue to expand this strong position.”


The objective of the Infinity research project is to use photovoltaics efficiently in different climate zones.

Fronius International


Five partners in science and nine partners in industry are participating in the Austrian photovoltaics lead project.

CTR

The demand for photovoltaic (PV) systems has increased over the past few years, not just in our part of the world. Future growth markets outside the temperate zones in particular, for example desert, (sub)tropical or alpine regions, also intend to use solar to a greater extent for generating electricity. However, there is currently only one standardised PV system for all climate zones. No options are available that can be adapted to different climate or grid conditions in specific applications.

Austrian lead project

Developing such application-specific options is the objective of the research in the Infinity project where five scientific partners and nine leading partners in industry have joined forces. The project is subsidised by the Climate and Energy Fund. Managing Director Theresia Vogel: “Projects such as Infinity help suppliers to manufacture more cost effectively and make affordable technologies available – and that worldwide.”

“What we want to achieve in the Austrian lead project is to create the basis for the next generation of PV components, systems and processes. Our research is therefore into adapting both the materials and the whole PV system to different climate conditions and special regional features. In our work, we also take such factors into account as extreme temperatures, sand and instable electrical grids,” says project manager Christina Hirschl from the research centre CTR Carinthian Tech Research.

“If we are to achieve the energy transition, we need smart PV systems that are long lasting, energy-efficient and also affordable. The project is also aimed at improving climate protection and making companies more competitive at an international level,” Hirschl adds.

ADAAPITVE SYSTEMS DELIVER HIGHER YIELD

The team of researchers will start off by conducting an in-depth error analysis to identify the mechanisms affecting how various materials, modules and inverters react in different climate zones both individually and as an overall system. They will then use the results gained to take a different approach to designing new, improved, climate-specific PV energy generation systems. “A special feature of the project is the holistic research method employed along the entire PV value chain - from the PV materials and components to module manufacture, PV system installation and maintenance.

The scientific findings will be used to develop further process, service and maintenance strategies. Our goal is to create new energy-efficient products and also new services,” Hirschl goes on to explain. Research is aimed at prolonging service life, reducing system costs and ultimately also yielding more electricity.

Lead scientist Michael Schwark from AIT adds: “The various inputs along the value chain will significantly improve the quality of the mathematical-physical models, enabling climate-related aging predictions to be given for all parts of a PV system. Apart from optimising the overall system, these models will also mean more accurate acceptance and maintenance recommendations for individual climate zones."

The research work provides an important basis for developing competitive, innovative products, such as flexible materials and PV modules that can be adapted to defined climate conditions as required.
As a whole, it will give the Austrian and European photovoltaics industry the opportunity to secure a competitive edge on the global market in terms of quality and above all establish sustainable research structures with scientific experts.

PROJECT FACTS & FIGURES
TITLE: INFINITY - Climate sensitive long-time reliability of photovoltaics
LEAD MANAGEMEN: Research centre CTR Carinthian Tech Research AG
SCIENTIFIC MANAGEMENT: Austrian Institute of Technology (AIT)
INDUSTRIAL PARTNERS: ENcome Energy Performance, Fronius International, Infineon Technologies Austria, Isovoltaic, KIOTO Photovoltaics, Polytec PT, PVI, PVSV, Ulbrich of Austria
SCIENTIFIC PARTNERS: AIT Austrian Institute of Technology, CTR Carinthian Tech Research, Vienna University of Applied Sciences, OFI Research Centre for Chemistry and Technology, PCCL Polymer Competence Center Leoben
DURATION: 3 years starting on 1 November 2015
RESEARCH VOLUME: €5.5 million

This project will be subsidised by Austria’s Climate and Energy Fund and carried out as part of its energy research programme. Since it was set up in 2007, the Climate and Energy Fund has provided grants totalling €32.4 million in the field of application-oriented research into solar thermal energy (STE) and photovoltaics (PV) for 68 projects (36 PV and 32 STE). The projects focus on improving system efficiency, developing energy-efficient manufacturing processes, using new materials and increasing the service life of components.

Weitere Informationen:

http://www.ctr.at/en/newspressvideos/press-releases
https://www.klimafonds.gv.at/

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>