Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photosynthesis or photovoltaics: Weighing the impact

13.05.2011
Which is more efficient at harvesting the sun's energy, plants or solar cells? This salient question and an answer are the subject of an article published in the May 13 issue of the journal Science.

Although both photosynthesis and photovoltaics harvest energy from the sun, they operate in distinctly different ways producing different fuels. It is not a simple task to find common ground between the two in order to compare energy conversion efficiency.

"In order to make meaningful comparisons between photosynthesis (which provides stored chemical potential) and photovoltaic technology (which provides instantaneous electrical power), we considered photovoltaic driven water electrolysis to yield hydrogen using existing technology as an example of artificial photosynthesis," explained co-author Thomas Moore, director of the Center for Bioenergy and Photosynthesis at Arizona State University.

"The hydrogen produced by the artificial system is thermodynamically equivalent to the sugar produced by photosynthesis. The take-home from this point is that the artificial system out performs the natural one, but on the basis of potential for efficient solar energy conversion as measured by the land area required for a given energy output, both technological and biological processes could in principle offer similar outcomes."

Photovoltaic technology uses fundamental principles combined with advances in materials to achieve record efficiencies of solar-to-electrical power conversion and thereby hydrogen production from water electrolysis.

Photosynthesis, on the other hand, originated in an environment where it was rapidly selected for, as it provided early life forms with a means of self-contained energy production. However, as with many evolutionary adaptations, it is far from a perfect, ideal system for the production of energy, and certainly is not optimal for providing solar-derived fuel to support human activities and economies.

All natural photosynthetic organisms contain light-gathering antenna systems in which specialized pigments (typically several hundred molecules) collect energy and transfer it to a reaction center where photochemistry takes place.

With so many pigments absorbing light energy, the capacity of the photosynthetic apparatus to process the energy is quickly exceeded. In leaves in full sun, up to 80 percent of the absorbed energy must be dumped to avoid its diversion into toxic chemical reactions that could damage or even kill the plant.

Modern agriculture has pushed photosynthesis about as far as it can go based on incremental improvements such as selection for high yield crops, land use improvements, use of modern fertilizers, water use, pesticides to control pests, and in short, the green revolution and all that it entails.

"We have identified many of the important inefficiencies that arise from the basic design of photosynthesis and have suggested ways to reengineer photosynthesis to improve its ability to meet human energy needs," explains Moore, a Regents' Professor in the Department of Chemistry and Biochemistry in the College of Liberal Arts and Sciences.

"These improvements to photosynthesis go beyond the incremental steps practiced since agriculture began thousands of years ago. At the end we allude to the use of synthetic biology to bring the knowledge and experience from fundamental studies in physics and artificial photosynthesis to photosynthesis in a combination of biology with technology to meet human energy needs."

Operating at approximately 133 trillion watts (or terawatts), photosynthesis powers the biosphere and thereby life on Earth. Currently, human activity appropriates about 24 percent of photosynthetic net primary production (NPP) to support the U.S. gross domestic product and nutrition.

The cost to the biosphere of "our cut" of NPP is driving several Earth systems irreversibly across boundaries that were established over geological time scales, says Moore. Earth systems affected include the nitrogen cycle, carbon cycle, fresh water, land use, and an increase in the rate of biodiversity loss. In other words, photosynthetic energy flow is currently booked (almost certainly overbooked) for biosphere services including food and limited bioenergy production for human use. As a consequence, there are no reserves of photosynthetic capacity to provide increasing amounts of biofuel for growing our GDP and food for the ever-increasing human population. Indeed, when such demands are made, the capacity comes at the further peril of biosphere services.

"Fortunately, the efficiency of photosynthetic NPP could be dramatically improved to meet human needs - the 133 terawatts increased to about 150 terawatts with minimum additional impact on Earth systems," explains Moore excitedly. "I'm thinking about selected photosynthetic systems in which rational design, based on the principles demonstrated in artificial systems, could be used to optimize solar-to-biofuel conversion efficiencies to meet particular needs."

"Such photosynthetic systems would be 'living' in that they would retain key features of living cells including self-assembly, repair, replication and the use of Earth-abundant materials – features that I think are essential to scale and match sustainable energy production to local needs but that remain elusive to non-living, human engineered constructs," concludes Moore.

Lead author on the paper is Robert E. Blankenship, Washington University, St. Louis. Additional authors include David M. Tiede, Argonne National Laboratory; James Barber, Imperial College London; Gary W. Brudvig, Yale; Graham Fleming and Anastasios Melis, University of California, Berkeley; Maria Ghirardi and Arthur J. Nozik, National Renewable Energy Laboratory, Colordao; M.R. Gunner, City College of New York; Wolfgang Junge, University of Osnabrück; David M. Kramer, Michigan State University; Christopher C. Moser, University of Pennsylvania; Daniel G. Nocera, Massachusetts Institute of Technology; Donald R. Ort, University of Illinois; William W. Parson; University of Washington; Roger C. Prince, ExxonMobil; and Richard T. Sayre, Donald Danforth Plant Science Center, St. Louis.

Jenny Green | EurekAlert!
Further information:
http://www.asu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>