Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: On track for downsizing

01.02.2013
The ability to miniaturize photonics devices to sizes compatible with computer chips inches closer
Optical communications, or photonics, technology has failed to match the miniaturization of electronic components, mainly because of fundamental laws of classical optics. The smallest photonic devices are limited to sizes of at least a micrometer. Researchers from the A*STAR Institute of Microelectronics (IME) in Singapore have now realized a device design that beats such size restrictions and can be easily integrated into a silicon chip1.

Using so-called ‘plasmonic techniques’, the researchers, led by Shiyang Zhu at the IME, demonstrated optical resonator structures, which allow a beam of light to circulate in a closed path, that can be used as on-off switches for light. The device is based on plasmonic effects that guide the light along the surface of the metal. “The performance of our devices is comparable to the best reported results for related plasmonic resonators,” says Zhu.

Conventional optical instruments, such as lenses, modify light as it passes through them. Plasmonic structures, however, act more like antennae that amplify light as it moves along their surface. Plasmonic features are typically created using metals such as gold or silver. However, integrating these noble metals with silicon chips is not only expensive, but also requires techniques that are incompatible with established silicon processing techniques.

As a workaround, Zhu and co-workers used copper to generate the desired plasmonic effects. Copper is widely used as electronic wires in silicon computer chips, and it has an established track record in the computer industry. The researchers built their plasmonic resonator devices from two copper structures that guide light along them - a long wire adjacent to a circle. The smallest width of the copper circuit is only about 180 nanometers, which is much smaller than conventional light guides.

The closeness of the wire and the circle is critical for efficient device operation. When light of a specific wavelength, which is determined by the dimensions of the circle, passes through the wire, some of it can leak into the circle where it becomes trapped. Light can only pass through the structure if it does not match the resonance wavelength of the circle.

The wavelength at which this resonance occurs is very sensitive to parameters such as temperature. In the future, this sensitivity in the circuits could be harnessed for use as switches that control how light passes through the wire, says Zhu. “The next step is to design and demonstrate active plasmonic devices, such as thermo-optic switchers and high-speed electro-optic modulators.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics
Associated links
http://www.research.a-star.edu.sg/research/6620
Journal information
Zhu, S., Lo, G. Q. & Kwong, D. L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Optics Express 20, 15232–15246 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6620
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Cost-efficiently modernising heating networks
11.02.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Demonstration of smart energy storage technologies and -management systems on the island of Borkum
11.02.2016 | Steinbeis-Europa-Zentrum

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>