Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: A more sensitive device

28.03.2011
Electron resonances could greatly enhance the response of the photodetectors critical to the operation of optical chips

Optical chips are the latest innovation in silicon technology with the potential to revolutionize telecommunications. Their operation relies on several key components, including light-emitting devices, waveguides and photodetectors. Engineers are looking for ways to miniaturize these components without sacrificing the data-processing speed of the integrated optical chips.

Patrick Guo-Qiang Lo and co-workers at the A*STAR Institute of Microelectronics[1] have now fabricated a highly sensitive photodetector by exploiting the enhancement effects of electron resonances that occur at metal contacts.

Surface plasmon polaritons—the collective movements of electrons at the surface of metals—are known to enhance and focus electromagnetic waves in their vicinity. The plasmon effect has been studied extensively for its ability to enhance the performance of optical devices, but in this study the researchers applied the phenomenon to improved the sensitivity, and hence speed, of semiconductor detectors.

Photodetectors on a silicon chip are generally designed to pick up light arriving through silicon waveguides. The light travelling through the silicon waveguides is detected by germanium, another semiconductor, which is grown directly on top of the silicon structure. However, the sensitivity of the germanium detector needs to be enhanced considerably in order to increase the speed and reduce the footprint of the photodetector further.

Plasmonic resonances can easily enhance the sensitivity of this light detection. The researchers introduced plasmons by adding thin aluminum contacts on top of the device (pictured). The plasmonic effects in the metal films channel considerably more light from the silicon waveguide into the photodetector, with important implications for device performance. “The enhanced photodetection enables the use of smaller devices, which in turn means that the device speed can be increased considerably,” explains Lo.

The researchers demonstrate detection speeds of 37.6 picoseconds or faster, corresponding to a data transmission speed of 11.4 gigahertz—several orders of magnitude faster than that achievable by current broadband connections.

At the same time, these speeds still lag behind the full potential of these detectors. One of the reasons, says Lo, is loss that arises from the plasmonic resonances, which absorb some of the light and therefore reduce the amount of light that arrives at the detector. “The response of the detector is lower than what we expected from our design,” says Lo. “Enhancing the plasmonic properties of the detector, for example through the design of different geometries, could alleviate such problems and enable a further miniaturization of photodetectors on silicon chips.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Ren, F.-F. et al. Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector. Applied Physics Letters 97, 091102 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6293
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>