Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Philippines’ microsatellite captures best-in-class high-resolution images

22.09.2016

The High Precision Telescope (HPT) installed in the Philippine’s DIWATA-1 microsatellite jointly developed by Hokkaido University and other institutions has successfully captured images with a ground resolution of about 3 meters—a world-best for a 50 kg-class microsatellite.

DIWATA-1 was created under a collaborative initiative by Hokkaido University, Tohoku University, the Philippines’ Department of Science and Technology (DOST), and the University of the Philippines Diliman (UPD). It was the first 50 kg-class microsatellite to be developed and manufactured in Japan for a foreign nation. The microsatellite is equipped with four imaging devices with different magnifications, including the HPT and a fish-lens camera, which are used to remotely observe a wide variety of phenomenon including weather hazards such as typhoons and torrential rain. The devices are also used to monitor agriculture, fishing, forestry and the environment, among other subjects.


This graphic compares two RGB images of Dumingag on the island of Mindanao, Philippines. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. These results demonstrate that DIWATA-1 can observe the Earth at significantly higher resolutions than existing large satellites.


This graphic compares two false-color images of a suburban area in Florida, United States. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. To emphasize areas of vegetation, near-infrared-band data was used to create the image.

On April 27 this year, DIWATA-1 was released into orbit by Kibo—the Japanese Experiment Module that is part of the International Space Station.

On May 19, the HPT successfully captured a three-color RGB (red, green and blue) image of the island of Mindanao in the Philippines at a ground resolution of about 3 meters, eclipsing the resolution of a photograph taken of the same location by the large-scale Landsat 8 satellite’s Operational Land Imager (OLI). The OLI image has a ground resolution of 30 meters.

... more about:
»agriculture »liquid crystal »wavelengths

Furthermore, while observing a suburban area of Florida in the United States on June 30, an advanced technique known as target pointing was used to control the attitude of the satellite and direct the camera at a specific location. To emphasize areas of vegetation, the image was created using the near-infrared-band data.

The successful imaging not only proves that it is possible to shoot high-resolution images with high frequency, but also establishes a powerful technique for microsatellites to capture spectral images at several tens of bands (wavelengths) or higher.

Hereafter, Hokkaido University will strive to improve the technology required to capture high-resolution images anywhere in the world twice a day, on average, while challenging space-based spectral imaging that uses liquid crystal filters equipped with the world’s largest selection of wavelengths. If the precision of these technologies can be further enhanced, it is expected to improve the accuracy of spectral information used for agriculture, the fisheries industry, forest management, resource development, and disaster monitoring, etc.

Contact:
Professor, Yukihiro Takahashi
Department of Earth and Planetary Sciences / Space Mission Center
Hokkaido University
Email: smc[at]cris.hokudai.ac.jp
URL: http://www.cris.hokudai.ac.jp/cris/smc/

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Hokkaido University | Research SEA

Further reports about: agriculture liquid crystal wavelengths

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>