Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Philippines’ microsatellite captures best-in-class high-resolution images

22.09.2016

The High Precision Telescope (HPT) installed in the Philippine’s DIWATA-1 microsatellite jointly developed by Hokkaido University and other institutions has successfully captured images with a ground resolution of about 3 meters—a world-best for a 50 kg-class microsatellite.

DIWATA-1 was created under a collaborative initiative by Hokkaido University, Tohoku University, the Philippines’ Department of Science and Technology (DOST), and the University of the Philippines Diliman (UPD). It was the first 50 kg-class microsatellite to be developed and manufactured in Japan for a foreign nation. The microsatellite is equipped with four imaging devices with different magnifications, including the HPT and a fish-lens camera, which are used to remotely observe a wide variety of phenomenon including weather hazards such as typhoons and torrential rain. The devices are also used to monitor agriculture, fishing, forestry and the environment, among other subjects.


This graphic compares two RGB images of Dumingag on the island of Mindanao, Philippines. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. These results demonstrate that DIWATA-1 can observe the Earth at significantly higher resolutions than existing large satellites.


This graphic compares two false-color images of a suburban area in Florida, United States. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. To emphasize areas of vegetation, near-infrared-band data was used to create the image.

On April 27 this year, DIWATA-1 was released into orbit by Kibo—the Japanese Experiment Module that is part of the International Space Station.

On May 19, the HPT successfully captured a three-color RGB (red, green and blue) image of the island of Mindanao in the Philippines at a ground resolution of about 3 meters, eclipsing the resolution of a photograph taken of the same location by the large-scale Landsat 8 satellite’s Operational Land Imager (OLI). The OLI image has a ground resolution of 30 meters.

... more about:
»agriculture »liquid crystal »wavelengths

Furthermore, while observing a suburban area of Florida in the United States on June 30, an advanced technique known as target pointing was used to control the attitude of the satellite and direct the camera at a specific location. To emphasize areas of vegetation, the image was created using the near-infrared-band data.

The successful imaging not only proves that it is possible to shoot high-resolution images with high frequency, but also establishes a powerful technique for microsatellites to capture spectral images at several tens of bands (wavelengths) or higher.

Hereafter, Hokkaido University will strive to improve the technology required to capture high-resolution images anywhere in the world twice a day, on average, while challenging space-based spectral imaging that uses liquid crystal filters equipped with the world’s largest selection of wavelengths. If the precision of these technologies can be further enhanced, it is expected to improve the accuracy of spectral information used for agriculture, the fisheries industry, forest management, resource development, and disaster monitoring, etc.

Contact:
Professor, Yukihiro Takahashi
Department of Earth and Planetary Sciences / Space Mission Center
Hokkaido University
Email: smc[at]cris.hokudai.ac.jp
URL: http://www.cris.hokudai.ac.jp/cris/smc/

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Hokkaido University | Research SEA

Further reports about: agriculture liquid crystal wavelengths

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>