Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Philippines’ microsatellite captures best-in-class high-resolution images

22.09.2016

The High Precision Telescope (HPT) installed in the Philippine’s DIWATA-1 microsatellite jointly developed by Hokkaido University and other institutions has successfully captured images with a ground resolution of about 3 meters—a world-best for a 50 kg-class microsatellite.

DIWATA-1 was created under a collaborative initiative by Hokkaido University, Tohoku University, the Philippines’ Department of Science and Technology (DOST), and the University of the Philippines Diliman (UPD). It was the first 50 kg-class microsatellite to be developed and manufactured in Japan for a foreign nation. The microsatellite is equipped with four imaging devices with different magnifications, including the HPT and a fish-lens camera, which are used to remotely observe a wide variety of phenomenon including weather hazards such as typhoons and torrential rain. The devices are also used to monitor agriculture, fishing, forestry and the environment, among other subjects.


This graphic compares two RGB images of Dumingag on the island of Mindanao, Philippines. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. These results demonstrate that DIWATA-1 can observe the Earth at significantly higher resolutions than existing large satellites.


This graphic compares two false-color images of a suburban area in Florida, United States. Image (a) was taken by the HPT installed in DIWATA-1, while image (b) was taken by Landsat 8’s OLI. To emphasize areas of vegetation, near-infrared-band data was used to create the image.

On April 27 this year, DIWATA-1 was released into orbit by Kibo—the Japanese Experiment Module that is part of the International Space Station.

On May 19, the HPT successfully captured a three-color RGB (red, green and blue) image of the island of Mindanao in the Philippines at a ground resolution of about 3 meters, eclipsing the resolution of a photograph taken of the same location by the large-scale Landsat 8 satellite’s Operational Land Imager (OLI). The OLI image has a ground resolution of 30 meters.

... more about:
»agriculture »liquid crystal »wavelengths

Furthermore, while observing a suburban area of Florida in the United States on June 30, an advanced technique known as target pointing was used to control the attitude of the satellite and direct the camera at a specific location. To emphasize areas of vegetation, the image was created using the near-infrared-band data.

The successful imaging not only proves that it is possible to shoot high-resolution images with high frequency, but also establishes a powerful technique for microsatellites to capture spectral images at several tens of bands (wavelengths) or higher.

Hereafter, Hokkaido University will strive to improve the technology required to capture high-resolution images anywhere in the world twice a day, on average, while challenging space-based spectral imaging that uses liquid crystal filters equipped with the world’s largest selection of wavelengths. If the precision of these technologies can be further enhanced, it is expected to improve the accuracy of spectral information used for agriculture, the fisheries industry, forest management, resource development, and disaster monitoring, etc.

Contact:
Professor, Yukihiro Takahashi
Department of Earth and Planetary Sciences / Space Mission Center
Hokkaido University
Email: smc[at]cris.hokudai.ac.jp
URL: http://www.cris.hokudai.ac.jp/cris/smc/

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Hokkaido University | Research SEA

Further reports about: agriculture liquid crystal wavelengths

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>