Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Develop Biological Circuit Components, New Microscope Technique for Measuring Them

09.06.2011
Electrical engineers have long been toying with the idea of designing biological molecules that can be directly integrated into electronic circuits.

University of Pennsylvania researchers have developed a way to form these structures so they can operate in open-air environments, and, more important, have developed a new microscope technique that can measure the electrical properties of these and similar devices.

The research was conducted by Dawn Bonnell, Trustee Chair Professor and director of the Nano/Bio Interface Center, graduate students Kendra Kathan-Galipeau and Maxim Nikiforov and postdoctoral fellow Sanjini Nanayakkara, all of the Department of Materials Science and Engineering in Penn’s School of Engineering and Applied Science.

They collaborated with assistant professor Bohdana Discher of the Department of Biophysics and Biochemistry at Penn’s Perelman School of Medicine and Paul A. O’Brien, a graduate student in Penn's Biotechnology Masters Program.

Their work was published in the journal ACS Nano.

The development involves artificial proteins, bundles of peptide helices with a photoactive molecule inside. These proteins are arranged on electrodes, which are common feature of circuits that transmit electrical charges between metallic and non-metallic elements. When light is shined on the proteins, they convert photons into electrons and pass them to the electrode.

“It's a similar mechanism to what happens when plants absorb light, except in that case the electron is used for some chemistry that creates energy for the plant,” Bonnell said. “In this case, we want to use the electron in electrical circuits.”

Similar peptide assemblies had been studied in solution before by several groups and had been tested to show that they indeed react to light. But there was no way to quantify their ambient electrical properties, particularly capacitance, the amount of electrical charge the assembly holds.

“It’s necessary to understand these kinds of properties in the molecules in order to make devices out of them. We've been studying silicon for 40 years, so we know what happens to electrons there,” Bonnell said. “We didn’t know what happens to electrons on dry electrodes with these proteins; we didn't even know if they would remain photoactive when attached to an electrode.”

Designing circuits and devices with silicon is inherently easier than with proteins. The electrical properties of a large chunk of a single element can be measured and then scaled down, but complex molecules like these proteins cannot be scaled up. Diagnostic systems that could measure their properties with nanometer sensitivity simply did not exist.

The researchers therefore needed to invent both a new way of a measuring these properties and a controlled way of making the photovoltaic proteins that would resemble how they might eventually be incorporated into devices in open-air, everyday environments, rather than swimming in a chemical solution.

To solve the first problem, the team developed a new kind of atomic force microscope technique, known as torsional resonance nanoimpedance microscopy. Atomic force microscopes operate by bringing an extremely narrow silicon tip very close to a surface and measuring how the tip reacts, providing a spatial sensitivity of a few nanometers down to individual atoms.

“What we've done in our version is to use a metallic tip and put an oscillating electric field on it. By seeing how electrons react to the field, we’re able to measure more complex interactions and more complex properties, such as capacitance,” Bonnell said.

Bohdana Discher’s group designed the self-assembling proteins much as they had done before but took the additional step of stamping them onto sheets of graphite electrodes. This manufacturing principle and the ability to measure the resulting devices could have a variety of applications.

“Photovoltaics — solar cells — are perhaps the easiest to imagine, but where this work is going in the shorter term is biochemical sensors,” Bonnell said.

Instead of reacting to photons, proteins could be designed to produce a charge when in the presence of a certain toxins, either changing color or acting as a circuit element in a human-scale gadget.

This research was supported by the Nano/Bio Interface Center and the National Science Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>