Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Develop Biological Circuit Components, New Microscope Technique for Measuring Them

09.06.2011
Electrical engineers have long been toying with the idea of designing biological molecules that can be directly integrated into electronic circuits.

University of Pennsylvania researchers have developed a way to form these structures so they can operate in open-air environments, and, more important, have developed a new microscope technique that can measure the electrical properties of these and similar devices.

The research was conducted by Dawn Bonnell, Trustee Chair Professor and director of the Nano/Bio Interface Center, graduate students Kendra Kathan-Galipeau and Maxim Nikiforov and postdoctoral fellow Sanjini Nanayakkara, all of the Department of Materials Science and Engineering in Penn’s School of Engineering and Applied Science.

They collaborated with assistant professor Bohdana Discher of the Department of Biophysics and Biochemistry at Penn’s Perelman School of Medicine and Paul A. O’Brien, a graduate student in Penn's Biotechnology Masters Program.

Their work was published in the journal ACS Nano.

The development involves artificial proteins, bundles of peptide helices with a photoactive molecule inside. These proteins are arranged on electrodes, which are common feature of circuits that transmit electrical charges between metallic and non-metallic elements. When light is shined on the proteins, they convert photons into electrons and pass them to the electrode.

“It's a similar mechanism to what happens when plants absorb light, except in that case the electron is used for some chemistry that creates energy for the plant,” Bonnell said. “In this case, we want to use the electron in electrical circuits.”

Similar peptide assemblies had been studied in solution before by several groups and had been tested to show that they indeed react to light. But there was no way to quantify their ambient electrical properties, particularly capacitance, the amount of electrical charge the assembly holds.

“It’s necessary to understand these kinds of properties in the molecules in order to make devices out of them. We've been studying silicon for 40 years, so we know what happens to electrons there,” Bonnell said. “We didn’t know what happens to electrons on dry electrodes with these proteins; we didn't even know if they would remain photoactive when attached to an electrode.”

Designing circuits and devices with silicon is inherently easier than with proteins. The electrical properties of a large chunk of a single element can be measured and then scaled down, but complex molecules like these proteins cannot be scaled up. Diagnostic systems that could measure their properties with nanometer sensitivity simply did not exist.

The researchers therefore needed to invent both a new way of a measuring these properties and a controlled way of making the photovoltaic proteins that would resemble how they might eventually be incorporated into devices in open-air, everyday environments, rather than swimming in a chemical solution.

To solve the first problem, the team developed a new kind of atomic force microscope technique, known as torsional resonance nanoimpedance microscopy. Atomic force microscopes operate by bringing an extremely narrow silicon tip very close to a surface and measuring how the tip reacts, providing a spatial sensitivity of a few nanometers down to individual atoms.

“What we've done in our version is to use a metallic tip and put an oscillating electric field on it. By seeing how electrons react to the field, we’re able to measure more complex interactions and more complex properties, such as capacitance,” Bonnell said.

Bohdana Discher’s group designed the self-assembling proteins much as they had done before but took the additional step of stamping them onto sheets of graphite electrodes. This manufacturing principle and the ability to measure the resulting devices could have a variety of applications.

“Photovoltaics — solar cells — are perhaps the easiest to imagine, but where this work is going in the shorter term is biochemical sensors,” Bonnell said.

Instead of reacting to photons, proteins could be designed to produce a charge when in the presence of a certain toxins, either changing color or acting as a circuit element in a human-scale gadget.

This research was supported by the Nano/Bio Interface Center and the National Science Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>