Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PartTec to Market SNS-Developed Neutron Detector System

PartTec, an Indiana-based manufacturer of radiation detection equipment, has signed an agreement to manufacture and market an advanced neutron detector system developed at the Department of Energy’s Oak Ridge National Laboratory.

The Shifting Scintillator Neutron Detector system was developed for DOE’s Spallation Neutron Source and High Flux Isotope Reactor complex, the world’s most advanced neutron science facility.

This system can determine the time and position of the neutron captured, enabling extremely accurate neutron time of flight measurements. It has large-area detector coverage, extremely low power requirements and digital communication capability, all factors that made it attractive to PartTec.

“PartTec has supported the work of the Spallation Neutron Source’s detector team for nearly five years with engineering, component manufacturing and management expertise,” said Herschel Workman, chief executive officer of PartTec. “The detector is proving itself in the POWGEN and VULCAN instruments at the SNS.”

Commercial interest in the product ranges from use at other neutron science facilities to security applications such as monitoring land, air and sea shipping for the presence of fissionable material.

Recently, because of constraints on helium-3 supply and the projected increasing demand, PartTec responded by re-engineering this detector system for use as an alternative to existing helium-3 detectors.

ORNL researchers developed the detector system to provide the very large detector areas (up to 45 square meters in the SNS POWGEN instrument) and high rates required by the SNS. Advances were made in neutron capturing scintillator, light collecting optics and data collection electronics. The data collection electronics uses a new and unique method of determining the neutron event location by encoding a bit pattern produced by single photons.

"The system is modular so that very large detector arrays can be built,” said Ron Cooper, a member of the development team at the SNS. “You can have greater than 50 square meters of detector coverage. It has high rate capability, good position resolution and features modern distributed personal computer-based electronics."

This system, developed by Richard Riedel, Lloyd Clonts and Jason Hodges of ORNL's Neutron Scattering Science Division, and Cooper, Lowell Crow, John Richards and Bruce Hannan of ORNL’s Neutron Facilities Development Division, is considered to be the leading candidate to replace helium-3 detectors at neutron scattering facilities throughout the world.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. PartTec (, which provides scientific research and advanced manufacturing services, has administrative and scientific offices in Bloomington, Ind., and engineering, design and manufacturing facilities in Linton, Ind.

Ron Walli | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>