Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleontologist Contributes to Flying Drone Design Based on Prehistoric Flying Reptile

06.10.2008
A Texas Tech University curator and an aeronautical engineer from the University of Florida have developed a 30-inch robotic spy plane modeled after a 225 million-year-old pterodactyl.

The drone, featuring a strange design of a rudder at the nose of the craft instead of the tail, would gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

This concept will be presented on Tuesday (Oct. 7) at the Annual Meeting of the Geological Society of America in Houston.

According to paleontologist Sankar Chatterjee of Texas Tech and Rick Lind of the University of Florida, this project will demonstrate a next-generation capability of sensor emplacement using a pterodactyl as the model animal.

The unmanned, sensor-packed craft in development could soon be demonstrated using existing materials and actuators, the researchers said. Pterodrone, the military’s next generation of airborne drones, won’t just be small and silent – they’ll alter their wing shapes using morphing techniques to squeeze through confined spaces, dive between buildings, zoom under overpasses, land on apartment balconies or sail along the coastline for surveillance.

Pterodactyls lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period, Chatterjee said. They dominated the Mesozoic sky, swooping over the heads of dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet. Their bodies featured lightweight bones and an intricate system of collagen fibers that added strength and agility to their membranous wings.

“These animals take the best parts of bats and birds,” Chatterjee said. “They had the maneuverability of a bat, but could glide like an albatross. Nothing alive today compares to the performance and agility of these animals. They lived for 160 million years, so they were not stupid animals. The skies were darkened by flocks of them. They were the dominant flying animals of their time.”

Tapejara wellnhoferi, a pterodactyl from Brazil, featured a large, thin rudder-like sail on its head that functioned as a sensory organ. Though as big as a Canada goose, its strange design made it stand out from the Cretaceous crowd when it came to flying. This design showed promise as a model to develop into an unmanned aerospace vehicle called Pterodrone, which has superior agility to perform missions requiring aerial, terrestrial and aquatic locomotion.

Putting the tail at the nose of an airplane would seem like a failed design. However, Chatterjee’s research into Tapejara’s flight showed that the rudder acted similarly to a flight computer in a modern-day aircraft and also helped with the animal’s turning agility.

“Since the discovery of a complete Tapejara in Brazil about 10 years ago, we’ve found they could actually sail on the wind for very long periods as they flew over the oceans,” he said. “They spent most of their time hunting for fish. By raising their wings like sails on a boat, they could use the slightest breeze in the same way a catamaran moves across water. They could take off quickly and fly long distances with little effort.”

Similarly, the drone will sail in the same manner.

Initially, Lind said he had his doubts about creating a drone built with a tail at the nose of the aircraft.

“A vertical tail on the head is a destabilizing influence, so we immediately questioned how Tapejara could survive in that configuration,” Lind said. “The issue of flight control becomes quite relevant as the animal, and thus aircraft, must alter its flight properties to take advantage of the turning capabilities presented by this vertical tail and yet remain stable.”

Chatterjee and Lind used computer simulation models and, based off the complete skeleton of the Tapejara, were able to unlock the secrets of flight from this strangely shaped flying animal.

“Sankar actually contacted me about three years ago after seeing a story on the Discovery Channel on our bird-inspired aircraft to inquire if a pterodactyl-inspired aircraft could also be feasible,” Lind said. “We shared some discussions for a while and then finally got serious this year once we had a common concept and could build upon that foundation.”

Bio-inspiration has led surprisingly to a wide variety of robotic design, especially small Unmanned Aerial Vehicles (UAVs) for urban environment that have taken cues from birds, bats and insects. Compared with a fixed-wing aircraft, a pterodactyl wing is a complicated structure of skin, hair, muscles, tendons, blood vessels and nerve tissue.

A team of students from the University of Florida will begin building the aircraft this fall. Chatterjee and Lind have submitted a joint proposal to The Defense Advanced Research Projects Agency at the Department of Defense, which is currently under review.

CONTACT:
Sankar Chatterjee,
curator of paleontology at the Museum of Texas
Tech and Horn Professor of Geosciences, (806) 742-1986 or
sankar.chatterjee@ttu.edu; Rick Lind, associate professor, Department of Mechanical and Aerospace Engineering, University of Florida, (325) 392-6745 or

ricklind@ufl.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>