Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleontologist Contributes to Flying Drone Design Based on Prehistoric Flying Reptile

06.10.2008
A Texas Tech University curator and an aeronautical engineer from the University of Florida have developed a 30-inch robotic spy plane modeled after a 225 million-year-old pterodactyl.

The drone, featuring a strange design of a rudder at the nose of the craft instead of the tail, would gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

This concept will be presented on Tuesday (Oct. 7) at the Annual Meeting of the Geological Society of America in Houston.

According to paleontologist Sankar Chatterjee of Texas Tech and Rick Lind of the University of Florida, this project will demonstrate a next-generation capability of sensor emplacement using a pterodactyl as the model animal.

The unmanned, sensor-packed craft in development could soon be demonstrated using existing materials and actuators, the researchers said. Pterodrone, the military’s next generation of airborne drones, won’t just be small and silent – they’ll alter their wing shapes using morphing techniques to squeeze through confined spaces, dive between buildings, zoom under overpasses, land on apartment balconies or sail along the coastline for surveillance.

Pterodactyls lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period, Chatterjee said. They dominated the Mesozoic sky, swooping over the heads of dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet. Their bodies featured lightweight bones and an intricate system of collagen fibers that added strength and agility to their membranous wings.

“These animals take the best parts of bats and birds,” Chatterjee said. “They had the maneuverability of a bat, but could glide like an albatross. Nothing alive today compares to the performance and agility of these animals. They lived for 160 million years, so they were not stupid animals. The skies were darkened by flocks of them. They were the dominant flying animals of their time.”

Tapejara wellnhoferi, a pterodactyl from Brazil, featured a large, thin rudder-like sail on its head that functioned as a sensory organ. Though as big as a Canada goose, its strange design made it stand out from the Cretaceous crowd when it came to flying. This design showed promise as a model to develop into an unmanned aerospace vehicle called Pterodrone, which has superior agility to perform missions requiring aerial, terrestrial and aquatic locomotion.

Putting the tail at the nose of an airplane would seem like a failed design. However, Chatterjee’s research into Tapejara’s flight showed that the rudder acted similarly to a flight computer in a modern-day aircraft and also helped with the animal’s turning agility.

“Since the discovery of a complete Tapejara in Brazil about 10 years ago, we’ve found they could actually sail on the wind for very long periods as they flew over the oceans,” he said. “They spent most of their time hunting for fish. By raising their wings like sails on a boat, they could use the slightest breeze in the same way a catamaran moves across water. They could take off quickly and fly long distances with little effort.”

Similarly, the drone will sail in the same manner.

Initially, Lind said he had his doubts about creating a drone built with a tail at the nose of the aircraft.

“A vertical tail on the head is a destabilizing influence, so we immediately questioned how Tapejara could survive in that configuration,” Lind said. “The issue of flight control becomes quite relevant as the animal, and thus aircraft, must alter its flight properties to take advantage of the turning capabilities presented by this vertical tail and yet remain stable.”

Chatterjee and Lind used computer simulation models and, based off the complete skeleton of the Tapejara, were able to unlock the secrets of flight from this strangely shaped flying animal.

“Sankar actually contacted me about three years ago after seeing a story on the Discovery Channel on our bird-inspired aircraft to inquire if a pterodactyl-inspired aircraft could also be feasible,” Lind said. “We shared some discussions for a while and then finally got serious this year once we had a common concept and could build upon that foundation.”

Bio-inspiration has led surprisingly to a wide variety of robotic design, especially small Unmanned Aerial Vehicles (UAVs) for urban environment that have taken cues from birds, bats and insects. Compared with a fixed-wing aircraft, a pterodactyl wing is a complicated structure of skin, hair, muscles, tendons, blood vessels and nerve tissue.

A team of students from the University of Florida will begin building the aircraft this fall. Chatterjee and Lind have submitted a joint proposal to The Defense Advanced Research Projects Agency at the Department of Defense, which is currently under review.

CONTACT:
Sankar Chatterjee,
curator of paleontology at the Museum of Texas
Tech and Horn Professor of Geosciences, (806) 742-1986 or
sankar.chatterjee@ttu.edu; Rick Lind, associate professor, Department of Mechanical and Aerospace Engineering, University of Florida, (325) 392-6745 or

ricklind@ufl.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>