Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleontologist Contributes to Flying Drone Design Based on Prehistoric Flying Reptile

06.10.2008
A Texas Tech University curator and an aeronautical engineer from the University of Florida have developed a 30-inch robotic spy plane modeled after a 225 million-year-old pterodactyl.

The drone, featuring a strange design of a rudder at the nose of the craft instead of the tail, would gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

This concept will be presented on Tuesday (Oct. 7) at the Annual Meeting of the Geological Society of America in Houston.

According to paleontologist Sankar Chatterjee of Texas Tech and Rick Lind of the University of Florida, this project will demonstrate a next-generation capability of sensor emplacement using a pterodactyl as the model animal.

The unmanned, sensor-packed craft in development could soon be demonstrated using existing materials and actuators, the researchers said. Pterodrone, the military’s next generation of airborne drones, won’t just be small and silent – they’ll alter their wing shapes using morphing techniques to squeeze through confined spaces, dive between buildings, zoom under overpasses, land on apartment balconies or sail along the coastline for surveillance.

Pterodactyls lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period, Chatterjee said. They dominated the Mesozoic sky, swooping over the heads of dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet. Their bodies featured lightweight bones and an intricate system of collagen fibers that added strength and agility to their membranous wings.

“These animals take the best parts of bats and birds,” Chatterjee said. “They had the maneuverability of a bat, but could glide like an albatross. Nothing alive today compares to the performance and agility of these animals. They lived for 160 million years, so they were not stupid animals. The skies were darkened by flocks of them. They were the dominant flying animals of their time.”

Tapejara wellnhoferi, a pterodactyl from Brazil, featured a large, thin rudder-like sail on its head that functioned as a sensory organ. Though as big as a Canada goose, its strange design made it stand out from the Cretaceous crowd when it came to flying. This design showed promise as a model to develop into an unmanned aerospace vehicle called Pterodrone, which has superior agility to perform missions requiring aerial, terrestrial and aquatic locomotion.

Putting the tail at the nose of an airplane would seem like a failed design. However, Chatterjee’s research into Tapejara’s flight showed that the rudder acted similarly to a flight computer in a modern-day aircraft and also helped with the animal’s turning agility.

“Since the discovery of a complete Tapejara in Brazil about 10 years ago, we’ve found they could actually sail on the wind for very long periods as they flew over the oceans,” he said. “They spent most of their time hunting for fish. By raising their wings like sails on a boat, they could use the slightest breeze in the same way a catamaran moves across water. They could take off quickly and fly long distances with little effort.”

Similarly, the drone will sail in the same manner.

Initially, Lind said he had his doubts about creating a drone built with a tail at the nose of the aircraft.

“A vertical tail on the head is a destabilizing influence, so we immediately questioned how Tapejara could survive in that configuration,” Lind said. “The issue of flight control becomes quite relevant as the animal, and thus aircraft, must alter its flight properties to take advantage of the turning capabilities presented by this vertical tail and yet remain stable.”

Chatterjee and Lind used computer simulation models and, based off the complete skeleton of the Tapejara, were able to unlock the secrets of flight from this strangely shaped flying animal.

“Sankar actually contacted me about three years ago after seeing a story on the Discovery Channel on our bird-inspired aircraft to inquire if a pterodactyl-inspired aircraft could also be feasible,” Lind said. “We shared some discussions for a while and then finally got serious this year once we had a common concept and could build upon that foundation.”

Bio-inspiration has led surprisingly to a wide variety of robotic design, especially small Unmanned Aerial Vehicles (UAVs) for urban environment that have taken cues from birds, bats and insects. Compared with a fixed-wing aircraft, a pterodactyl wing is a complicated structure of skin, hair, muscles, tendons, blood vessels and nerve tissue.

A team of students from the University of Florida will begin building the aircraft this fall. Chatterjee and Lind have submitted a joint proposal to The Defense Advanced Research Projects Agency at the Department of Defense, which is currently under review.

CONTACT:
Sankar Chatterjee,
curator of paleontology at the Museum of Texas
Tech and Horn Professor of Geosciences, (806) 742-1986 or
sankar.chatterjee@ttu.edu; Rick Lind, associate professor, Department of Mechanical and Aerospace Engineering, University of Florida, (325) 392-6745 or

ricklind@ufl.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>