Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleontologist Contributes to Flying Drone Design Based on Prehistoric Flying Reptile

06.10.2008
A Texas Tech University curator and an aeronautical engineer from the University of Florida have developed a 30-inch robotic spy plane modeled after a 225 million-year-old pterodactyl.

The drone, featuring a strange design of a rudder at the nose of the craft instead of the tail, would gather data from sights, sounds and smells in urban combat zones and transmit information back to a command center.

This concept will be presented on Tuesday (Oct. 7) at the Annual Meeting of the Geological Society of America in Houston.

According to paleontologist Sankar Chatterjee of Texas Tech and Rick Lind of the University of Florida, this project will demonstrate a next-generation capability of sensor emplacement using a pterodactyl as the model animal.

The unmanned, sensor-packed craft in development could soon be demonstrated using existing materials and actuators, the researchers said. Pterodrone, the military’s next generation of airborne drones, won’t just be small and silent – they’ll alter their wing shapes using morphing techniques to squeeze through confined spaces, dive between buildings, zoom under overpasses, land on apartment balconies or sail along the coastline for surveillance.

Pterodactyls lived 228 to 65 million years ago from the late Triassic Period to the end of the Cretaceous Period, Chatterjee said. They dominated the Mesozoic sky, swooping over the heads of dinosaurs. Their sizes ranged from a sparrow to a Cessna plane with a wingspan of 35 feet. Their bodies featured lightweight bones and an intricate system of collagen fibers that added strength and agility to their membranous wings.

“These animals take the best parts of bats and birds,” Chatterjee said. “They had the maneuverability of a bat, but could glide like an albatross. Nothing alive today compares to the performance and agility of these animals. They lived for 160 million years, so they were not stupid animals. The skies were darkened by flocks of them. They were the dominant flying animals of their time.”

Tapejara wellnhoferi, a pterodactyl from Brazil, featured a large, thin rudder-like sail on its head that functioned as a sensory organ. Though as big as a Canada goose, its strange design made it stand out from the Cretaceous crowd when it came to flying. This design showed promise as a model to develop into an unmanned aerospace vehicle called Pterodrone, which has superior agility to perform missions requiring aerial, terrestrial and aquatic locomotion.

Putting the tail at the nose of an airplane would seem like a failed design. However, Chatterjee’s research into Tapejara’s flight showed that the rudder acted similarly to a flight computer in a modern-day aircraft and also helped with the animal’s turning agility.

“Since the discovery of a complete Tapejara in Brazil about 10 years ago, we’ve found they could actually sail on the wind for very long periods as they flew over the oceans,” he said. “They spent most of their time hunting for fish. By raising their wings like sails on a boat, they could use the slightest breeze in the same way a catamaran moves across water. They could take off quickly and fly long distances with little effort.”

Similarly, the drone will sail in the same manner.

Initially, Lind said he had his doubts about creating a drone built with a tail at the nose of the aircraft.

“A vertical tail on the head is a destabilizing influence, so we immediately questioned how Tapejara could survive in that configuration,” Lind said. “The issue of flight control becomes quite relevant as the animal, and thus aircraft, must alter its flight properties to take advantage of the turning capabilities presented by this vertical tail and yet remain stable.”

Chatterjee and Lind used computer simulation models and, based off the complete skeleton of the Tapejara, were able to unlock the secrets of flight from this strangely shaped flying animal.

“Sankar actually contacted me about three years ago after seeing a story on the Discovery Channel on our bird-inspired aircraft to inquire if a pterodactyl-inspired aircraft could also be feasible,” Lind said. “We shared some discussions for a while and then finally got serious this year once we had a common concept and could build upon that foundation.”

Bio-inspiration has led surprisingly to a wide variety of robotic design, especially small Unmanned Aerial Vehicles (UAVs) for urban environment that have taken cues from birds, bats and insects. Compared with a fixed-wing aircraft, a pterodactyl wing is a complicated structure of skin, hair, muscles, tendons, blood vessels and nerve tissue.

A team of students from the University of Florida will begin building the aircraft this fall. Chatterjee and Lind have submitted a joint proposal to The Defense Advanced Research Projects Agency at the Department of Defense, which is currently under review.

CONTACT:
Sankar Chatterjee,
curator of paleontology at the Museum of Texas
Tech and Horn Professor of Geosciences, (806) 742-1986 or
sankar.chatterjee@ttu.edu; Rick Lind, associate professor, Department of Mechanical and Aerospace Engineering, University of Florida, (325) 392-6745 or

ricklind@ufl.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>