Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Uses New Technologies to Take Steam Out of Wasted Energy

07.10.2010
By installing wireless sensors and replacing faulty traps along the 12 miles of steam lines at Oak Ridge National Laboratory, officials expect to save as much as $675,000 per year.

With 1,600 steam traps, which normally open slightly to discharge condensed steam with a negligible loss of live steam, the problem occurs when a trap fails and that failure goes undetected and unrepaired, said Teja Kuruganti, a member of the Computational Sciences and Engineering Division.

Manual inspections of each trap is a daunting and sometimes dangerous task, but by collecting and monitoring data initially from 30 sensors at five steam trap locations, the team of researchers expects to demonstrate significant savings.

Steam is used at ORNL, industrial sites and universities throughout the nation for heating and cooling buildings. A Department of Energy study published in 2005, however, identified faulty steam traps as a major source of energy waste at industrial sites. “Approximately 20 percent of the steam leaving a central boiler plant is lost via leaking traps in typical space heating systems without proactive assessment programs,” the report, “Steam Trap Performance Assessment,” stated.

With this project, ORNL researchers see a chance to save money, reduce the lab’s carbon footprint and lead by example.

Working with Johnson Controls, ORNL has already repaired or replaced any faulty traps, and is considering expanding the wireless sensor system by installing hundreds of sensors.

“The installation of wireless sensors throughout much of the steam system can give us an early warning of component failures or impending failures,” said Wayne Parker of ORNL’s Utilities Division. “Catching problems as early as possible is essential in minimizing losses and maximizing savings.”

Kuruganti noted that wireless capability is “an ORNL hallmark” and this project leverages tools and technologies developed under the DOE Industrial Wireless Program. The sensors will monitor steam flow and temperature. The project will use the ORNL-developed Sensorpedia technology for standards-based information visualization.

Others involved in this project are Glenn Allgood, Joe Lake, Seddik Djouadi, Wayne Manges, Robert Baugh, Teresa Baer, Rob Crowell, Kenneth Woodworth, Mohammed Olama and Rangan Sukumar.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Image: http://www.ornl.gov/info/press_releases/photos/steam%201.JPG

Cutline: Twelve miles of steam lines at Oak Ridge National Laboratory provide lots of opportunities for steam to escape. (Photo by Ron Walli/ORNL)

| Newswise Science News
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Filter may be a match for fracking water
26.09.2017 | Swansea University

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>