Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL solar cell technology cranks up efficiency

02.05.2011
With the creation of a 3-D nanocone-based solar cell platform, a team led by Oak Ridge National Laboratory's Jun Xu has boosted the light-to-power conversion efficiency of photovoltaics by nearly 80 percent.

The technology substantially overcomes the problem of poor transport of charges generated by solar photons. These charges -- negative electrons and positive holes -- typically become trapped by defects in bulk materials and their interfaces and degrade performance.

"To solve the entrapment problems that reduce solar cell efficiency, we created a nanocone-based solar cell, invented methods to synthesize these cells and demonstrated improved charge collection efficiency," said Xu, a member of ORNL's Chemical Sciences Division.

The new solar structure consists of n-type nanocones surrounded by a p-type semiconductor. The n-type nanoncones are made of zinc oxide and serve as the junction framework and the electron conductor. The p-type matrix is made of polycrystalline cadmium telluride and serves as the primary photon absorber medium and hole conductor.

With this approach at the laboratory scale, Xu and colleagues were able to obtain a light-to-power conversion efficiency of 3.2 percent compared to 1.8 percent efficiency of conventional planar structure of the same materials.

"We designed the three-dimensional structure to provide an intrinsic electric field distribution that promotes efficient charge transport and high efficiency in converting energy from sunlight into electricity," Xu said.

Key features of the solar material include its unique electric field distribution that achieves efficient charge transport; the synthesis of nanocones using inexpensive proprietary methods; and the minimization of defects and voids in semiconductors. The latter provides enhanced electric and optical properties for conversion of solar photons to electricity.

Because of efficient charge transport, the new solar cell can tolerate defective materials and reduce cost in fabricating next-generation solar cells.

"The important concept behind our invention is that the nanocone shape generates a high electric field in the vicinity of the tip junction, effectively separating, injecting and collecting minority carriers, resulting in a higher efficiency than that of a conventional planar cell made with the same materials," Xu said.

Research that forms the foundation of this technology was accepted by this year's Institute of Electrical and Electronics Engineers photovoltaic specialist conference and will be published in the IEEE Proceedings. The papers are titled "Efficient Charge Transport in Nanocone Tip-Film Solar Cells" and "Nanojunction solar cells based on polycrystalline CdTe films grown on ZnO nanocones."

The research was supported by the Laboratory Directed Research and Development program and the Department of Energy's Office of Nonproliferation Research and Engineering.

Other contributors to this technology are Sang Hyun Lee, X-G Zhang, Chad Parish, Barton Smith, Yongning He, Chad Duty and Ho Nyung Lee.

UT-Battelle manages ORNL for DOE's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>