Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL solar cell technology cranks up efficiency

02.05.2011
With the creation of a 3-D nanocone-based solar cell platform, a team led by Oak Ridge National Laboratory's Jun Xu has boosted the light-to-power conversion efficiency of photovoltaics by nearly 80 percent.

The technology substantially overcomes the problem of poor transport of charges generated by solar photons. These charges -- negative electrons and positive holes -- typically become trapped by defects in bulk materials and their interfaces and degrade performance.

"To solve the entrapment problems that reduce solar cell efficiency, we created a nanocone-based solar cell, invented methods to synthesize these cells and demonstrated improved charge collection efficiency," said Xu, a member of ORNL's Chemical Sciences Division.

The new solar structure consists of n-type nanocones surrounded by a p-type semiconductor. The n-type nanoncones are made of zinc oxide and serve as the junction framework and the electron conductor. The p-type matrix is made of polycrystalline cadmium telluride and serves as the primary photon absorber medium and hole conductor.

With this approach at the laboratory scale, Xu and colleagues were able to obtain a light-to-power conversion efficiency of 3.2 percent compared to 1.8 percent efficiency of conventional planar structure of the same materials.

"We designed the three-dimensional structure to provide an intrinsic electric field distribution that promotes efficient charge transport and high efficiency in converting energy from sunlight into electricity," Xu said.

Key features of the solar material include its unique electric field distribution that achieves efficient charge transport; the synthesis of nanocones using inexpensive proprietary methods; and the minimization of defects and voids in semiconductors. The latter provides enhanced electric and optical properties for conversion of solar photons to electricity.

Because of efficient charge transport, the new solar cell can tolerate defective materials and reduce cost in fabricating next-generation solar cells.

"The important concept behind our invention is that the nanocone shape generates a high electric field in the vicinity of the tip junction, effectively separating, injecting and collecting minority carriers, resulting in a higher efficiency than that of a conventional planar cell made with the same materials," Xu said.

Research that forms the foundation of this technology was accepted by this year's Institute of Electrical and Electronics Engineers photovoltaic specialist conference and will be published in the IEEE Proceedings. The papers are titled "Efficient Charge Transport in Nanocone Tip-Film Solar Cells" and "Nanojunction solar cells based on polycrystalline CdTe films grown on ZnO nanocones."

The research was supported by the Laboratory Directed Research and Development program and the Department of Energy's Office of Nonproliferation Research and Engineering.

Other contributors to this technology are Sang Hyun Lee, X-G Zhang, Chad Parish, Barton Smith, Yongning He, Chad Duty and Ho Nyung Lee.

UT-Battelle manages ORNL for DOE's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>