Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL energy harvesters transform waste into electricity

17.05.2011
Billions of dollars lost each year as waste heat from industrial processes can be converted into electricity with a technology being developed at the Department of Energy's Oak Ridge National Laboratory.

The high-efficiency thermal waste heat energy converter actively cools electronic devices, photovoltaic cells, computers and large waste heat-producing systems while generating electricity, according to Scott Hunter, who leads the development team. The potential for energy savings is enormous.

"In the United States, more than 50 percent of the energy generated annually from all sources is lost as waste heat," Hunter said, "so this actually presents us with a great opportunity to save industry money through increased process efficiencies and reduced fuel costs while reducing greenhouse gas emissions."

Initially, Hunter envisions the technology being used for cooling high-performance computer chips, thereby helping to solve an enormous problem facing manufacturers of petaflop-scale computers. These mega machines generate massive amounts of heat that must be removed, and the more efficient the process the better. Turning some of that heat into electricity is an added bonus.

Hunter's technology uses cantilever structures that are about 1 millimeter square in size. About 1,000 of these energy converters can be attached to a 1-inch square surface such as a computer chip, concentrated photovoltaic cell or other devices that generate heat. Although the amount of electricity each device can generate is small – 1 to 10 milliwatts per device – many arrays of these devices can be used to generate sizable amounts of electricity that can power remote sensor systems or assist in the active cooling of the heat generating device, reducing cooling demands.

The underlying concept, pyroelectricity, is based on the use of pyroelectric materials, some of which have been known for centuries. First attempts to use this technology to generate electricity began several decades ago, but these studies have been plagued by low thermal to electricity conversion efficiencies – from about 1 to 5 percent.

This is also the case for techniques using thermoelectric, piezoelectric and conventional pyroelectric platforms. However, using arrays of cantilevered energy converters that feature fast response and cycle times, Hunter's team expects to achieve efficiencies of 10 to 30 percent – depending on the temperature of the waste heat generator – in an inexpensive platform that can be fabricated using standard semiconductor manufacturing technology.

"The fast rate of exchange in the temperature across the pyroelectric material is the key to the energy conversion efficiency and high electrical power generation," Hunter said, adding that ORNL's energy scavenger technology is able to generate electrical energy from thermal waste streams with temperature gradients of just a few degrees up to several hundred degrees.

The device is based on an energy harvesting system that features a micro-electro-mechanical, or MEMS, pyroelectric capacitor structure that when heated and cooled causes current to flow in alternate directions, which can be used to generate electricity. In this configuration, cantilevers are attached to an anchor that is affixed to a waste heat generator substrate. As this substrate becomes hot, the cantilever also heats and bends because of the bi-material effect, similar in principle to the bimetal switch used in room and oven thermostats.

"The tip of the hot cantilever comes into contact with a cold surface, the heat sink, where it rapidly loses its heat, causing the cantilever to move back and make contact with the hot surface," Hunter said. "The cantilever then cools and cycles back to the cold heat sink.

"The cantilever continues to oscillate between the heat source and heat sink as long as the temperature difference is maintained between the hot and cold surfaces."

Other developers of this technology, which is funded by the Laboratory Directed Research and Development program, are Nickolay Lavrik, Thirumalesh Bannuru, Salwa Mostafa, Slo Rajic and Panos Datskos. UT-Battelle manages ORNL for DOE's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

nachricht Molecular switch will facilitate the development of pioneering electro-optical devices
24.05.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>