Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic waste into biomethane: Concepts for five European cities

11.03.2014

Waste management is still a challenge for many European regions. However, there are possibilities for utilizing organic residues in a suitable way. Knowledge gained in the EU project “UrbanBiogas” will be presented today by the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) during the “European Biomethane Workshop” in Brussels. The results of UrbanBiogas show how municipalities can transform their urban organic residues into the sustainable energy “biomethane”.

Mr. Hoffstede, group manager responsible for Biogas Plant Technology at IWES, stated „Biogas production from waste materials is a trendsetting technology that helps to solve waste problems in urban areas and is a great tool to help reach the EU 2020 targets”.


Biogas processing plant in Lidköping, Sweden

© Fraunhofer IWES

The UrbanBiogas project is supported by the Intelligent Energy for Europe Programme of the European Commission. The objective of the project is to promote the use of organic urban waste for biogas production, to develop individual and feasible Waste to Biomethane (WtB) plant concepts for the 5 European cities participating in the project: Abrantes (Portugal), Gydnia (Poland), Graz (Austria), Zagreb (Croatia) und Valmiera (Latvia).

„The biogas production and upgrading technology is available and operates reliably”, says the IWES expert for biogas upgrading and grid injection, Michael Beil.

Reliable Biogas Upgrading Technology

The employees of the responsible companies for energy and waste management in each of the five participating cities were trained by Fraunhofer IWES experts within the UrbanBiogas project. The training comprises not only technical biogas production and upgrading concepts but also project financing as well as a basic understanding of the whole biomethane value chain. “Together with the working groups of our project partners we could develop WtB concepts which will profit from the organic waste potential by being economically feasible”, concluded Mr. Beil at the end of the triannual project.

Partner cities in Portugal, Poland, Austria, Croatia and Latvia

All five partner cities will put the developed concepts into practice in the near future, which will be a valuable contribution to climate protection and to achieving the European targets for renewable energies. The Latvian city Valmiera for example will start to implement a biogas plant this year for € 1.5 million. The target is to use both the annual 7,000 tons of organic waste and 3,000 tons of green waste energetically for biogas production instead of composting it. The estimated produced energy of 3,000 MWh will meet the electricity demand of 800 private households.

European Biomethane Workshop informs about the project findings

Fraunhofer IWES experts share the findings of UrbanBiogas and discuss the project together with other European experts during today´s „European Biomethane Workshop“. Focus is also put on the development of the European biomethane market, its value chain and the efficient use of biomethane in the European Union. “German biogas plant manufacturers are searching for new markets to promote their technologies in Europe since the German biomethane market is currently declining.”, so M. Beil Fraunhofer IWES. Besides the outcome of the project UrbanBiogas, the results of two more projects „GreenGrasGrids“ and „Biomaster“ are discussed within the workshop.

Project page „UrbanBiogas“ http://www.urbanbiogas.eu/
Event page: http://european-biogas.eu/events/biomethane-workshop/

Contact person Fraunhofer IWES:

Dipl.-Ing. Uwe Hoffstede
Group manager Biogas plat technology
+49 561 7294-438
uwe.hoffstede@iwes.fraunhofer.de

Dipl.-Ing. Michael Beil
Group manager Gas upgrading, injection and grids
+49 561 7294-421
michael.beil@iwes.fraunhofer.de

Weitere Informationen:

http://www.iwes.fraunhofer.de/en.html

Uwe Krengel | Fraunhofer-Institut

Further reports about: Biogas Energy IWES Organic Poland Technology concepts findings promote responsible

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>