Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic waste into biomethane: Concepts for five European cities

11.03.2014

Waste management is still a challenge for many European regions. However, there are possibilities for utilizing organic residues in a suitable way. Knowledge gained in the EU project “UrbanBiogas” will be presented today by the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) during the “European Biomethane Workshop” in Brussels. The results of UrbanBiogas show how municipalities can transform their urban organic residues into the sustainable energy “biomethane”.

Mr. Hoffstede, group manager responsible for Biogas Plant Technology at IWES, stated „Biogas production from waste materials is a trendsetting technology that helps to solve waste problems in urban areas and is a great tool to help reach the EU 2020 targets”.


Biogas processing plant in Lidköping, Sweden

© Fraunhofer IWES

The UrbanBiogas project is supported by the Intelligent Energy for Europe Programme of the European Commission. The objective of the project is to promote the use of organic urban waste for biogas production, to develop individual and feasible Waste to Biomethane (WtB) plant concepts for the 5 European cities participating in the project: Abrantes (Portugal), Gydnia (Poland), Graz (Austria), Zagreb (Croatia) und Valmiera (Latvia).

„The biogas production and upgrading technology is available and operates reliably”, says the IWES expert for biogas upgrading and grid injection, Michael Beil.

Reliable Biogas Upgrading Technology

The employees of the responsible companies for energy and waste management in each of the five participating cities were trained by Fraunhofer IWES experts within the UrbanBiogas project. The training comprises not only technical biogas production and upgrading concepts but also project financing as well as a basic understanding of the whole biomethane value chain. “Together with the working groups of our project partners we could develop WtB concepts which will profit from the organic waste potential by being economically feasible”, concluded Mr. Beil at the end of the triannual project.

Partner cities in Portugal, Poland, Austria, Croatia and Latvia

All five partner cities will put the developed concepts into practice in the near future, which will be a valuable contribution to climate protection and to achieving the European targets for renewable energies. The Latvian city Valmiera for example will start to implement a biogas plant this year for € 1.5 million. The target is to use both the annual 7,000 tons of organic waste and 3,000 tons of green waste energetically for biogas production instead of composting it. The estimated produced energy of 3,000 MWh will meet the electricity demand of 800 private households.

European Biomethane Workshop informs about the project findings

Fraunhofer IWES experts share the findings of UrbanBiogas and discuss the project together with other European experts during today´s „European Biomethane Workshop“. Focus is also put on the development of the European biomethane market, its value chain and the efficient use of biomethane in the European Union. “German biogas plant manufacturers are searching for new markets to promote their technologies in Europe since the German biomethane market is currently declining.”, so M. Beil Fraunhofer IWES. Besides the outcome of the project UrbanBiogas, the results of two more projects „GreenGrasGrids“ and „Biomaster“ are discussed within the workshop.

Project page „UrbanBiogas“ http://www.urbanbiogas.eu/
Event page: http://european-biogas.eu/events/biomethane-workshop/

Contact person Fraunhofer IWES:

Dipl.-Ing. Uwe Hoffstede
Group manager Biogas plat technology
+49 561 7294-438
uwe.hoffstede@iwes.fraunhofer.de

Dipl.-Ing. Michael Beil
Group manager Gas upgrading, injection and grids
+49 561 7294-421
michael.beil@iwes.fraunhofer.de

Weitere Informationen:

http://www.iwes.fraunhofer.de/en.html

Uwe Krengel | Fraunhofer-Institut

Further reports about: Biogas Energy IWES Organic Poland Technology concepts findings promote responsible

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>