Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Organic light-emitting diodes

Research highlights energy efficient solutions for display and lighting applications

The search for innovative, cost-effective and energy-efficient solutions for display and lighting applications are the focus of ongoing intense worldwide photonics research and development activities.

Organic light-emitting diodes (OLEDs)—lightweight, potentially flexible, cheap-to-fabricate and highly energy-efficient lighting and display devices—offer one solution in alternative energy lighting and display applications. To highlight breakthroughs in this area, the Optical Society (OSA ( today published a special Focus Issue on OLEDs ( in Energy Express (, a bi-monthly supplement to its open access journal Optics Express ( The issue is organized and edited by Guest Editors Emil J.W. List of the NanoTecCenter Weiz GmbH and Graz University of Technology in Austria, and Norbert Koch of the Institute of Physics, Humbolt University in Germany.

"OLEDs are amongst the most promising candidates for alternative display and lighting solutions," said List. "The exciting findings presented in this focus issue will ultimately translate into real-world applications, providing consumers with cost-effective technology while reducing electricity consumption."

More than 20 percent of the world's total electricity consumption is used for lighting applications. That number increases to an estimated 25 percent when including display and TV applications. OLEDs, along with inorganic solid-state lighting technologies, are considered to be on the forefront of 21st century display and lighting technologies. The widespread use of this technology could save hundreds of gigawatt hours (GWh) of power or millions of tons of coal per year.

"OLEDs can be found in a variety of everyday products such as television screens, computer monitors and smartphones," said Koch. "As use of these products becomes more widespread, the need for research and development also grows. The latest advances reflected in this focus issue are truly exceptional and will prove to be invaluable to advancements in lighting and display technology."

Key Findings and Select Papers

The following papers are some of the highlights of the Energy Express Focus Issue on OLEDs. All are included in Volume 19, issue S6 and can be accessed online at

The outcoupling of light from an OLED may be tackled by different means, including optical feedback structures in the active layer, by high index-media in top-emitting OLED, by lens or microlens-like arrays, or by using microcavity effects in the active device. As reviewed and discussed by Simone Hofmann, Karl Leo and their colleagues from the Institute for Applied for Photophysics, TU Dresden in Germany, in particular top-emitting OLEDs seem to be beneficial for lighting and display applications. Here, non-transparent substrates are used. The authors review and discuss different optical effects of the microcavity structure and identify important loss mechanisms due to waveguiding and surface plasmons, and show that further improvement in light extraction is required to reach the targeted high outcoupling efficiencies.

Paper: "Top-Emitting Organic Light-Emitting Diodes (," Optics Express, Vol. 19, Issue S6, pp. A1250-A1264 (2011).

A very practical approach to improve the outcoupling efficiency in OLEDs up to 60 percent is demonstrated by Ruth Shinar and Joseph Shinar from the U.S. Department of Energy's Ames Laboratory and Iowa State University, and coworkers, using index-matching microporous phase-separated films of polymer blends acting as random microlens-like arrays. They demonstrate that the use of such blended thin films provides an economical method independent of the OLED fabrication technique, for improving outcoupling.

Paper: "Microporous phase-separated films of polymer blends for enhanced outcoupling of light from OLEDs (," Optics Express, Vol. 19, Issue S6, pp. A1272-A1280 (2011).

To overcome the losses at the organic layer/cathode interface and to optimize the optical path in the devices, Lian Duan, Yong Qiu and their colleagues from the Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, and the R&D Center, Visionox Tech. Ltd, Beijing, introduce an approach by using a novel, rather thick, n-doped layer. Using a combination of a low-temperature-evaporable n-dopant KBH4 and a high charge carrier mobility electron transport material they show excellent performance of their devices due to reduced losses at the organic layer/cathode interface.

Paper: "Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host (," Optics Express, Vol. 19, Issue S6, pp. A1265-A1271 (2011).

About Energy Express

As a special bi-monthly supplement to Optics Express, Energy Express is dedicated to rapidly communicating new developments in optics for sustainable energy. Energy Express will have original research side-by-side with review articles written by the world's leading experts in the science and engineering of light and its impact on sustainable energy development, the environment, and green technologies. For more information, see:

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>