Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimal planning of solar power plants

02.05.2012
The photovoltaics industry is booming, and the market for solar farms is growing quickly all over the world. Yet, the task of planning PV power plants to make them as effi cient as possible is far from trivial. Fraunhofer researchers, working with Siemens Energy Photovoltaics, have developed software that simplifi es conceptual design.

The share of renewable energies in the overall energy mix is rising rapidly worldwide. With three-fi gure growth rates, photovoltaics (PV) play a major role. According to market research organizations, the PV market grew by 139 percent in the year 2010. Germany is among the world‘s leaders in this technology that uses solar cells to convert sunlight straight into electrical energy.


In the future, large PV plants such as the Siemens solar farm that went into operation in 2011 in Le Mées, France, can be planned quickly and effi ciently using the PVplanet software solution. © Siemens AG

Yet the task of planning large-scale PV power plants spanning several square kilometers is a complex one. With customer specifi cations, regulations and government subsidy programs to consider, designers must also account for numerous other factors including weather, climate, topography and location. These factors, in turn, infl uence the selection and placement of the individual components which include the PV arrays with their solar modules, inverters and wiring, not to mention access roads. Until now, engineers have designed solar power plants using CAD programs, with every layout and every variation painstakingly generated separately. This is a very time-consuming approach. To improve a planned power plant in terms of certain criteria, or to compare different concepts with one another, oftentimes the entire planning process has to be repeated.

Several hundred plant designs at the push of a button

In the future, this approach will be improved considerably: researchers at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, in collaboration with Siemens Energy Photovoltaics, have developed a new planning software that makes it possible to build solar power plants better and more quickly. “Our algorithms programmed exclusively for the Siemens PVplanet (PV Plant Engineering Toolbox) software provide engineers with several hundred different plant designs in a single operation. It takes less than a minute of computation time,“ ITWM researcher Dr. Ingmar Schüle points out. The only user inputs are parameters such as the topography of the construction site and the module and inverter types that will be used. The user can also change a number of parameters – such as the orientation, spacing and inclination of the solar arrays – to study the impact on the quality of the planning result.

Cost estimates and income calculations included

To evaluate the designed PV power plants, an income calculation is performed that includes a simulation of the weather in the region in question, the course of the sun throughout the year and the physical module performance including shading effects. With the results of this computation and an estimate of the investment and operating costs, the planning tool can come up with a fi gure for the LCOE (levelized cost of energy).

By comparing the plant with a large number of similar confi gurations, the planners can investigate the sensitivity of the various parameters to fi nd the right solution from a large array of options. “The software assists the expert with decisionmaking and helps with the design of the best possible PV power plant for the site involved. Which one is ‘best‘ depends on a number of aspects – from the customer’s objectives to the site and environmental conditions, but also on the fi nancing concept and the fi nancial incentives for photovoltaics in the target region. All of these criteria are taken into account.“ Schüle points out. Dr. Martin Bischoff, project manager at Siemens AG, Energy Sector, is also convinced of this approach: “Aside savings, more than anything else the planning tool provides an overview of the scope for optimization.

This provides the best possible support for planning the most cost-effi cient systems. There has been no other planning software with this scope or level of detail until now.“ Interested individuals can get an impression of the successful teamwork between ITWM and Siemens Energy Photovoltaics at the Intersolar Europe trade fair in Munich, June 13-15, 2012: the software celebrates its public premiere at the Siemens booth in Hall B4, Booth B4.380.

Dr. Ingmar Schüle | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/optimal-planning-of-solar-power-plants.html

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>