Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Official Starting Signal for Research Alliance for Wind Energy

01.02.2013
A unique alliance for German wind energy research was officially formed in Berlin yesterday - the Research Alliance for Wind Energy.

Representatives of the three partners, the German Aerospace Centre (DLR), ForWind, the Center for Wind Energy Research of the Universities Oldenburg, Hannover and Bremen, and the Fraunhofer Institute for Wind Energy and Energy Systems Technology (IWES) signed the cooperation agreement.

The combined know-how of more than 600 scientists will pave the way for groundbreaking impulses for a renewable energy future based on on- and offshore wind energy.

The research alliance, through its personnel strength and by networking knowledge and expertise, will be able to successfully process long term and strategically important major projects. A research infrastructure with test centres and laboratories will process innovative issues and set standards across the globe.

Federal Minister for the Environment Peter Altmaier welcomed the founding: „A coordinated alliance for wind energy research strengthens companies based in Germany and contributes to their future. A successful energy turnaround requires efficient and reliable wind energy turbines which the research alliance is working on”.

The community of the research alliance has an international charisma and opens up synergies for upcoming major projects in the wind industry. Answers to technologically demanding questions are urgently needed for the increasing professionalization of the branch and the maintaining of technological leadership. The partners’ content-related cooperation starts directly in the BMU funded project “Smart Blades – Development and Construction of Intelligent Rotor Blades” which has a project volume of 12 million Euros and a runtime of 39 months.

Joint Research on Intelligent Rotor Blades
Researchers expect that smart blade technologies will result in rotor blade load reduction enabling an aerodynamically optimized and lighter design of wind energy turbines. Design changes can lead to reductions in material and logistics costs and increases in turbine service life.

Rotor blade trailing edges which can change their shape and flaps which divert wind when required – very large rotor blades equipped with such mechanisms can systematically correct gusts and reduce performance fluctuations. As a result susceptibility to damage can be reduced and longer service life achieved. Such active technologies are already being tested in aeronautics and are now to be applied in wind energy.

If the wind blows too strongly today’s rotor blades are turned full length out of the wind. In the meantime, the new blades, up to 85 meter in length, move over an area equivalent to more than several football fields with every rotation. The gustiness of wind though, leads to very different wind conditions within this large area and so cannot be taken into account when making blanket – and also relatively slow – adjustments to the entire rotor blade. For this reason local flow is now to be influenced more accurately and quickly through movable slats, trailing edges and other systems.

Great Challenges in the Wind Energy Branch
Turbine builders so far have shied away from the development and use of smart blades. The great challenge will be that through use of active mechanisms the rotor blades do not become less reliable, heavier and more maintenance intensive and prime costs do not increase. Therefore, the target of the research project is proving the feasibility, efficiency and reliability of smart blades.

The kick-off for this first major alliance project was the starting point for work, using one „passive“ and two alternative „active“ technologies, on the rotor blade design tasks.

Contact for further information:

DLR
Dorothee Bürkle, Communications DLR
P: +49 2203 601 3492
E: dorothee.buerkle@dlr.de
ForWind
Dr. Stephan Barth - Managing Director
P: +49 441 798 5091
E: stephan.barth@forwind.de
Fraunhofer IWES
Prof. Dr.-Ing. Andreas Reuter
Managing Director Fraunhofer IWES
P: +49 471 14290-200
E: andreas.reuter@iwes.fraunhofer.de

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.dlr.de/
http://www.forwind.de/
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Using renewable energy in heating networks more efficiently
09.02.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht From allergens to anodes: Pollen derived battery electrodes
08.02.2016 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>