Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Official Starting Signal for Research Alliance for Wind Energy

A unique alliance for German wind energy research was officially formed in Berlin yesterday - the Research Alliance for Wind Energy.

Representatives of the three partners, the German Aerospace Centre (DLR), ForWind, the Center for Wind Energy Research of the Universities Oldenburg, Hannover and Bremen, and the Fraunhofer Institute for Wind Energy and Energy Systems Technology (IWES) signed the cooperation agreement.

The combined know-how of more than 600 scientists will pave the way for groundbreaking impulses for a renewable energy future based on on- and offshore wind energy.

The research alliance, through its personnel strength and by networking knowledge and expertise, will be able to successfully process long term and strategically important major projects. A research infrastructure with test centres and laboratories will process innovative issues and set standards across the globe.

Federal Minister for the Environment Peter Altmaier welcomed the founding: „A coordinated alliance for wind energy research strengthens companies based in Germany and contributes to their future. A successful energy turnaround requires efficient and reliable wind energy turbines which the research alliance is working on”.

The community of the research alliance has an international charisma and opens up synergies for upcoming major projects in the wind industry. Answers to technologically demanding questions are urgently needed for the increasing professionalization of the branch and the maintaining of technological leadership. The partners’ content-related cooperation starts directly in the BMU funded project “Smart Blades – Development and Construction of Intelligent Rotor Blades” which has a project volume of 12 million Euros and a runtime of 39 months.

Joint Research on Intelligent Rotor Blades
Researchers expect that smart blade technologies will result in rotor blade load reduction enabling an aerodynamically optimized and lighter design of wind energy turbines. Design changes can lead to reductions in material and logistics costs and increases in turbine service life.

Rotor blade trailing edges which can change their shape and flaps which divert wind when required – very large rotor blades equipped with such mechanisms can systematically correct gusts and reduce performance fluctuations. As a result susceptibility to damage can be reduced and longer service life achieved. Such active technologies are already being tested in aeronautics and are now to be applied in wind energy.

If the wind blows too strongly today’s rotor blades are turned full length out of the wind. In the meantime, the new blades, up to 85 meter in length, move over an area equivalent to more than several football fields with every rotation. The gustiness of wind though, leads to very different wind conditions within this large area and so cannot be taken into account when making blanket – and also relatively slow – adjustments to the entire rotor blade. For this reason local flow is now to be influenced more accurately and quickly through movable slats, trailing edges and other systems.

Great Challenges in the Wind Energy Branch
Turbine builders so far have shied away from the development and use of smart blades. The great challenge will be that through use of active mechanisms the rotor blades do not become less reliable, heavier and more maintenance intensive and prime costs do not increase. Therefore, the target of the research project is proving the feasibility, efficiency and reliability of smart blades.

The kick-off for this first major alliance project was the starting point for work, using one „passive“ and two alternative „active“ technologies, on the rotor blade design tasks.

Contact for further information:

Dorothee Bürkle, Communications DLR
P: +49 2203 601 3492
Dr. Stephan Barth - Managing Director
P: +49 441 798 5091
Fraunhofer IWES
Prof. Dr.-Ing. Andreas Reuter
Managing Director Fraunhofer IWES
P: +49 471 14290-200

Uwe Krengel | Fraunhofer-Institut
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>