Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Official Starting Signal for Research Alliance for Wind Energy

01.02.2013
A unique alliance for German wind energy research was officially formed in Berlin yesterday - the Research Alliance for Wind Energy.

Representatives of the three partners, the German Aerospace Centre (DLR), ForWind, the Center for Wind Energy Research of the Universities Oldenburg, Hannover and Bremen, and the Fraunhofer Institute for Wind Energy and Energy Systems Technology (IWES) signed the cooperation agreement.

The combined know-how of more than 600 scientists will pave the way for groundbreaking impulses for a renewable energy future based on on- and offshore wind energy.

The research alliance, through its personnel strength and by networking knowledge and expertise, will be able to successfully process long term and strategically important major projects. A research infrastructure with test centres and laboratories will process innovative issues and set standards across the globe.

Federal Minister for the Environment Peter Altmaier welcomed the founding: „A coordinated alliance for wind energy research strengthens companies based in Germany and contributes to their future. A successful energy turnaround requires efficient and reliable wind energy turbines which the research alliance is working on”.

The community of the research alliance has an international charisma and opens up synergies for upcoming major projects in the wind industry. Answers to technologically demanding questions are urgently needed for the increasing professionalization of the branch and the maintaining of technological leadership. The partners’ content-related cooperation starts directly in the BMU funded project “Smart Blades – Development and Construction of Intelligent Rotor Blades” which has a project volume of 12 million Euros and a runtime of 39 months.

Joint Research on Intelligent Rotor Blades
Researchers expect that smart blade technologies will result in rotor blade load reduction enabling an aerodynamically optimized and lighter design of wind energy turbines. Design changes can lead to reductions in material and logistics costs and increases in turbine service life.

Rotor blade trailing edges which can change their shape and flaps which divert wind when required – very large rotor blades equipped with such mechanisms can systematically correct gusts and reduce performance fluctuations. As a result susceptibility to damage can be reduced and longer service life achieved. Such active technologies are already being tested in aeronautics and are now to be applied in wind energy.

If the wind blows too strongly today’s rotor blades are turned full length out of the wind. In the meantime, the new blades, up to 85 meter in length, move over an area equivalent to more than several football fields with every rotation. The gustiness of wind though, leads to very different wind conditions within this large area and so cannot be taken into account when making blanket – and also relatively slow – adjustments to the entire rotor blade. For this reason local flow is now to be influenced more accurately and quickly through movable slats, trailing edges and other systems.

Great Challenges in the Wind Energy Branch
Turbine builders so far have shied away from the development and use of smart blades. The great challenge will be that through use of active mechanisms the rotor blades do not become less reliable, heavier and more maintenance intensive and prime costs do not increase. Therefore, the target of the research project is proving the feasibility, efficiency and reliability of smart blades.

The kick-off for this first major alliance project was the starting point for work, using one „passive“ and two alternative „active“ technologies, on the rotor blade design tasks.

Contact for further information:

DLR
Dorothee Bürkle, Communications DLR
P: +49 2203 601 3492
E: dorothee.buerkle@dlr.de
ForWind
Dr. Stephan Barth - Managing Director
P: +49 441 798 5091
E: stephan.barth@forwind.de
Fraunhofer IWES
Prof. Dr.-Ing. Andreas Reuter
Managing Director Fraunhofer IWES
P: +49 471 14290-200
E: andreas.reuter@iwes.fraunhofer.de

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.dlr.de/
http://www.forwind.de/
http://www.iwes.fraunhofer.de/

More articles from Power and Electrical Engineering:

nachricht Vortex laser offers hope for Moore's Law
29.07.2016 | University at Buffalo

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>