Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean-Tracking Receiver to Aid Weather Forecasts

12.02.2009
For weather forecasters trying to stay ahead of the next tropical cyclone, deadly heat wave or drought, knowing the ocean water temperature, circulation patterns and current shifts can be critical factors to success.

Now, scientists at the University of Massachusetts Amherst and the Jet Propulsion Laboratory (JPL), Pasadena, are designing and building the next generation of orbiting tracker for NASA that will supply such data with unparalleled precision.

The 18-inch receiver being built at UMass Amherst, is part of the larger instrument expected to greatly enhance forecasting. It works by reflecting 35-GHz microwaves off the Earth’s surface from an orbit 600 miles above to track factors that long-range meteorologists use to predict climate phenomena. Knowing water temperature and current flow can help to give early warning of an El Niño effect, for example, which periodically triggers drought, floods, and other unusual weather events, costing billions of dollars.

The lead researcher building a critical component of the instrument, an interferometric receiver, is Paul Siqueira of the UMass Amherst Microwave Remote Sensing Laboratory and associate professor of electrical and computer engineering. He and colleagues recently received a $1.08-million, three-year NASA grant to design and build the receiver, which is expected to be launched with other supporting instruments aboard the space agency’s Surface Water and Ocean Topography (SWOT) satellite sometime between 2013 and 2016. It will provide a continually updated map of global water levels, topography and temperature for the oceans and for selected inland waters.

This latest interferometer project from UMass Amherst and JPL represents a significant improvement over a previous version that flew on board the space shuttle in 2000, and orbited at a lower altitude (140 miles). The new generation will carry more advanced electronics, and will be smaller, lighter and consume less power, hence cheaper to launch and operate.

The interferometer works by bouncing a microwave beam off the water surface below and measuring the difference in arrival time back at the antennas located 30 feet from each other on the satellite. The instrument takes extremely accurate readings of the water height at many points worldwide, according to Siqueira. “With both antennas receiving signals at nearly the same time, we measure the difference in time that it takes each signal to reach the antennas, and then with a simple geometric transformation, determine the height of that spot in the ocean.” The microwaves are extremely low power and will be harmless to people, wildlife and boats in the water, Siqueira points out.

With these data, water temperature can be calculated, given that a half-inch change in ocean height over a 100-foot vertical volume corresponds to a one-degree Fahrenheit change in temperature. “The warmer the water, the more oceans swell, and the more water goes into the atmosphere,” the engineer explains. “What you’re getting from the satellite measurements is a temperature map of the oceans that has been derived from its topography.” Mapping in this way can alert observers to changes in ocean temperature and currents – keys to predicting hurricane tracks, monitoring features such as the Gulf Stream and, ultimately, assessing the climate variables.

“The more detailed measurements you have from a satellite,” says Siqueira, “the more accurate global climate model you can create.”

Paul Siqueira | Newswise Science News
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>