Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean-Tracking Receiver to Aid Weather Forecasts

12.02.2009
For weather forecasters trying to stay ahead of the next tropical cyclone, deadly heat wave or drought, knowing the ocean water temperature, circulation patterns and current shifts can be critical factors to success.

Now, scientists at the University of Massachusetts Amherst and the Jet Propulsion Laboratory (JPL), Pasadena, are designing and building the next generation of orbiting tracker for NASA that will supply such data with unparalleled precision.

The 18-inch receiver being built at UMass Amherst, is part of the larger instrument expected to greatly enhance forecasting. It works by reflecting 35-GHz microwaves off the Earth’s surface from an orbit 600 miles above to track factors that long-range meteorologists use to predict climate phenomena. Knowing water temperature and current flow can help to give early warning of an El Niño effect, for example, which periodically triggers drought, floods, and other unusual weather events, costing billions of dollars.

The lead researcher building a critical component of the instrument, an interferometric receiver, is Paul Siqueira of the UMass Amherst Microwave Remote Sensing Laboratory and associate professor of electrical and computer engineering. He and colleagues recently received a $1.08-million, three-year NASA grant to design and build the receiver, which is expected to be launched with other supporting instruments aboard the space agency’s Surface Water and Ocean Topography (SWOT) satellite sometime between 2013 and 2016. It will provide a continually updated map of global water levels, topography and temperature for the oceans and for selected inland waters.

This latest interferometer project from UMass Amherst and JPL represents a significant improvement over a previous version that flew on board the space shuttle in 2000, and orbited at a lower altitude (140 miles). The new generation will carry more advanced electronics, and will be smaller, lighter and consume less power, hence cheaper to launch and operate.

The interferometer works by bouncing a microwave beam off the water surface below and measuring the difference in arrival time back at the antennas located 30 feet from each other on the satellite. The instrument takes extremely accurate readings of the water height at many points worldwide, according to Siqueira. “With both antennas receiving signals at nearly the same time, we measure the difference in time that it takes each signal to reach the antennas, and then with a simple geometric transformation, determine the height of that spot in the ocean.” The microwaves are extremely low power and will be harmless to people, wildlife and boats in the water, Siqueira points out.

With these data, water temperature can be calculated, given that a half-inch change in ocean height over a 100-foot vertical volume corresponds to a one-degree Fahrenheit change in temperature. “The warmer the water, the more oceans swell, and the more water goes into the atmosphere,” the engineer explains. “What you’re getting from the satellite measurements is a temperature map of the oceans that has been derived from its topography.” Mapping in this way can alert observers to changes in ocean temperature and currents – keys to predicting hurricane tracks, monitoring features such as the Gulf Stream and, ultimately, assessing the climate variables.

“The more detailed measurements you have from a satellite,” says Siqueira, “the more accurate global climate model you can create.”

Paul Siqueira | Newswise Science News
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>