Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean-Tracking Receiver to Aid Weather Forecasts

12.02.2009
For weather forecasters trying to stay ahead of the next tropical cyclone, deadly heat wave or drought, knowing the ocean water temperature, circulation patterns and current shifts can be critical factors to success.

Now, scientists at the University of Massachusetts Amherst and the Jet Propulsion Laboratory (JPL), Pasadena, are designing and building the next generation of orbiting tracker for NASA that will supply such data with unparalleled precision.

The 18-inch receiver being built at UMass Amherst, is part of the larger instrument expected to greatly enhance forecasting. It works by reflecting 35-GHz microwaves off the Earth’s surface from an orbit 600 miles above to track factors that long-range meteorologists use to predict climate phenomena. Knowing water temperature and current flow can help to give early warning of an El Niño effect, for example, which periodically triggers drought, floods, and other unusual weather events, costing billions of dollars.

The lead researcher building a critical component of the instrument, an interferometric receiver, is Paul Siqueira of the UMass Amherst Microwave Remote Sensing Laboratory and associate professor of electrical and computer engineering. He and colleagues recently received a $1.08-million, three-year NASA grant to design and build the receiver, which is expected to be launched with other supporting instruments aboard the space agency’s Surface Water and Ocean Topography (SWOT) satellite sometime between 2013 and 2016. It will provide a continually updated map of global water levels, topography and temperature for the oceans and for selected inland waters.

This latest interferometer project from UMass Amherst and JPL represents a significant improvement over a previous version that flew on board the space shuttle in 2000, and orbited at a lower altitude (140 miles). The new generation will carry more advanced electronics, and will be smaller, lighter and consume less power, hence cheaper to launch and operate.

The interferometer works by bouncing a microwave beam off the water surface below and measuring the difference in arrival time back at the antennas located 30 feet from each other on the satellite. The instrument takes extremely accurate readings of the water height at many points worldwide, according to Siqueira. “With both antennas receiving signals at nearly the same time, we measure the difference in time that it takes each signal to reach the antennas, and then with a simple geometric transformation, determine the height of that spot in the ocean.” The microwaves are extremely low power and will be harmless to people, wildlife and boats in the water, Siqueira points out.

With these data, water temperature can be calculated, given that a half-inch change in ocean height over a 100-foot vertical volume corresponds to a one-degree Fahrenheit change in temperature. “The warmer the water, the more oceans swell, and the more water goes into the atmosphere,” the engineer explains. “What you’re getting from the satellite measurements is a temperature map of the oceans that has been derived from its topography.” Mapping in this way can alert observers to changes in ocean temperature and currents – keys to predicting hurricane tracks, monitoring features such as the Gulf Stream and, ultimately, assessing the climate variables.

“The more detailed measurements you have from a satellite,” says Siqueira, “the more accurate global climate model you can create.”

Paul Siqueira | Newswise Science News
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>