Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean-Tracking Receiver to Aid Weather Forecasts

For weather forecasters trying to stay ahead of the next tropical cyclone, deadly heat wave or drought, knowing the ocean water temperature, circulation patterns and current shifts can be critical factors to success.

Now, scientists at the University of Massachusetts Amherst and the Jet Propulsion Laboratory (JPL), Pasadena, are designing and building the next generation of orbiting tracker for NASA that will supply such data with unparalleled precision.

The 18-inch receiver being built at UMass Amherst, is part of the larger instrument expected to greatly enhance forecasting. It works by reflecting 35-GHz microwaves off the Earth’s surface from an orbit 600 miles above to track factors that long-range meteorologists use to predict climate phenomena. Knowing water temperature and current flow can help to give early warning of an El Niño effect, for example, which periodically triggers drought, floods, and other unusual weather events, costing billions of dollars.

The lead researcher building a critical component of the instrument, an interferometric receiver, is Paul Siqueira of the UMass Amherst Microwave Remote Sensing Laboratory and associate professor of electrical and computer engineering. He and colleagues recently received a $1.08-million, three-year NASA grant to design and build the receiver, which is expected to be launched with other supporting instruments aboard the space agency’s Surface Water and Ocean Topography (SWOT) satellite sometime between 2013 and 2016. It will provide a continually updated map of global water levels, topography and temperature for the oceans and for selected inland waters.

This latest interferometer project from UMass Amherst and JPL represents a significant improvement over a previous version that flew on board the space shuttle in 2000, and orbited at a lower altitude (140 miles). The new generation will carry more advanced electronics, and will be smaller, lighter and consume less power, hence cheaper to launch and operate.

The interferometer works by bouncing a microwave beam off the water surface below and measuring the difference in arrival time back at the antennas located 30 feet from each other on the satellite. The instrument takes extremely accurate readings of the water height at many points worldwide, according to Siqueira. “With both antennas receiving signals at nearly the same time, we measure the difference in time that it takes each signal to reach the antennas, and then with a simple geometric transformation, determine the height of that spot in the ocean.” The microwaves are extremely low power and will be harmless to people, wildlife and boats in the water, Siqueira points out.

With these data, water temperature can be calculated, given that a half-inch change in ocean height over a 100-foot vertical volume corresponds to a one-degree Fahrenheit change in temperature. “The warmer the water, the more oceans swell, and the more water goes into the atmosphere,” the engineer explains. “What you’re getting from the satellite measurements is a temperature map of the oceans that has been derived from its topography.” Mapping in this way can alert observers to changes in ocean temperature and currents – keys to predicting hurricane tracks, monitoring features such as the Gulf Stream and, ultimately, assessing the climate variables.

“The more detailed measurements you have from a satellite,” says Siqueira, “the more accurate global climate model you can create.”

Paul Siqueira | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>