Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oak Ridge National Laboratory, Industry to Collaborate in Advanced Battery Research

22.04.2010
Through new collaborations totaling $6.2 million, the Department of Energy’s (DOE) Oak Ridge National Laboratory (ORNL) and American industry will tackle some of the most critical challenges facing lithium ion battery production.

After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE’s Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control and processing scale-up. An independent council comprising ORNL and DOE representatives selected proposals from companies across the country.

“While high performance lithium ion batteries are projected to be an energy storage leapfrog technology, safety, service life and costs are still concerns,” says ORNL Director Thom Mason. “Forging synergistic collaborations between government and industry will help uncover the solutions that can advance battery technology and lead to stronger national energy security.”

As part of ORNL’s efforts to advance battery materials and processing technology under the ARRA funding, individual Cooperative Research and Development Agreements (CRADAs) have been signed with: A123 Systems, for domestic supply of anode materials; Dow Kokam, for processing and characterization of novel cathodes; Porous Power Technologies, for improved separator materials; and Planar Energy, for scalable processing of solid-state batteries. In each case, industry cost-share exceeds 50 percent of the total project cost.

“By leveraging our expertise in materials science and manufacturing, ORNL will assist these partners with their individual energy storage challenges and address opportunities to surpass non-domestic secondary battery manufacturers that dominate today’s market,” says ORNL’s Energy Materials Program Director Craig Blue. Secondary lithium ion cell manufacturing encompasses a broad range of disciplines including formulation chemistry, film casting, polymer processing, materials and composite design, interfacial science and component engineering.

In addition to ITP and industry funding, EERE’s Vehicle Technologies Program (VTP) is contributing funding to directly support the CRADA efforts, each of which comprises part of the battery supply chain. Two of the companies, A123 and Dow Kokam, were awarded DOE battery manufacturing grants, as well as Michigan refundable tax credits to construct battery manufacturing facilities in Michigan. Accordingly, the Michigan Economic Development Corporation (MEDC) is also providing funding to ORNL’s overall battery research effort to help ensure success of the industry.

“The financial support from ITP, VTP and MEDC symbolizes DOE and Michigan’s shared goal to advance energy technologies critical to the nation and the world, through collaboration and leveraging of resources,” says ORNL’s Program Director for Energy Partnerships, Ray Boeman. Boeman is currently assigned in Michigan to develop such collaborative programs between government, academia and industry.

According to ORNL’s David Wood, co-principal investigator and technical lead on the project, collaborative research is expected to take place during the next 18 months. Wood adds, “This is a unique and timely opportunity for ORNL to help government and industry set the course for a new generation of energy storage technologies.”

ORNL is managed by UT-Battelle for the Department of Energy.

Kathy Graham | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>