Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL Tests Robotic Fueling of Unmanned Surface Vessels

21.03.2012
Engineers from the NRL Spacecraft Engineering Department (SED) successfully demonstrate the robotic fluids transfer from a stationary platform to an Unmanned Surface Vehicle (USV) in wave heights greater than three feet.

The Rapid Autonomous Fuel Transfer (RAFT) project exhibits the ability to track the motion of a Sea Fox naval vessel, safely emplace a magnetic refueling fitting to an on-board refueling receptacle and successfully complete fluids transfer.

Under current circumstance, USV refueling demands that a grappled connection, usually by hand, be made between the USV and the refueling vessel.

"Refueling a USV at sea, particularly in adverse weather or in high sea states, can prove difficult and often dangerous," said Dr. Glen Henshaw, Attitude Control Section, SED Control Systems Branch. "Transferring our extensive knowledge and proven success of robotic spacecraft servicing can prove equally successful in reducing risks at sea."

Providing the host ship the capability to refuel USVs without the need to bring them aboard ship enhances mission efficiency and reduces host ship exposure. This works to improve the effectiveness of naval USV missions and decrease risks to personnel and potential damage to vessels and equipment.

Experimenting with both fully autonomous and human-controlled operations at the U.S. Army Aberdeen Test Center wave simulator facility, NRL engineers completed approximately 60 trial refueling attempts at sea states ranging from zero, or calm seas, to 3.25, or maximum wave heights in excess of three feet, with a demonstrated high rate of success.

Funded by the Defense Advanced Research Projects Agency (DARPA), the Rapid Autonomous Fuel Transfer (RAFT) project teamed NRL with Clemson University, Science Applications International Corporation (SAIC) and Space and Naval Warfare Systems Command (SPAWAR). NRL was the lead robotics integrator and designed the robotics system.

Further robotic transfer tests will possibly include land-based autonomous HMMV (High-Mobility Multipurpose Wheeled Vehicle) applications without the need to stop driving and on-air Unmanned Aerial Vehicle (UAV) refueling.

The USV Sea Fox was developed for Navy missions to provide force protection with more flexibility in Enhanced Maritime Interdiction Operations and safer Intelligence, Surveillance and Reconnaissance (ISR) gathering to aid in threat assessment, decision-making, and situational awareness, prior to escalation to lethal actions.

The U.S. Naval Research Laboratory's Spacecraft Engineering Department (SED) serves as the focal point for the Navy's in-house spacecraft bus capability. Research and development activities range from concept and feasibility studies through initial on orbit space systems operation. SED's Robotics Engineering and Control Laboratory serves as a national test bed to support research in the emerging field of space robotics including autonomous rendezvous and capture, remote assembly operations, and machine learning.

About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil
http://www.nrl.navy.mil/media/news-releases/2012/nrl-test-robotic-fueling-of-unmanned-surface-vessels

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>