Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL Report Firms Up Land-Use Requirements of Solar

07.08.2013
Study shows solar for 1,000 homes would require 32 acres

The Energy Department’s National Renewable Energy Laboratory (NREL) has published a report on the land use requirements of solar power plants based on actual land-use practices from existing solar facilities.

“Having real data from a majority of the solar plants in the United States will help people make proper comparisons and informed decisions,” lead author Sean Ong said. The report, “Land-use Requirements for Solar Power Plants in the United States,”PDF was written with NREL colleagues Clinton Campbell, Robert Margolis, Paul Denholm and Garvin Heath.

Ong gathered data from 72% of the solar power plants installed or under construction in the United States. Among the findings:

A large fixed tilt photovoltaic (PV) plant that generates 1 gigawatt-hour per year requires, on average, 2.8 acres for the solar panels. This means that a solar power plant that provides all of the electricity for 1,000 homes would require 32 acres of land.

Small single-axis PV systems require on average 2.9 acres per annual gigawatt-hour – or 3.8 acres when considering all unused area that falls inside the project boundary.

Concentrating solar power plants require on average 2.7 acres for solar collectors and other equipment per annual gigawatt-hour; 3.5 acres for all land enclosed within the project boundary.

By the third quarter of 2012, the United States had deployed more than 2.1 gigawatts of utility-scale solar generation capacity. Another 4.6 gigawatts was under construction. There has been a long-running debate over the comparative land needs for various forms of energy, old and new. But that’s not the purpose of the new report, Ong and Denholm emphasized.

“The numbers aren’t good news or bad news,” Denholm said. “It’s just that there was not an understanding of actual land-use requirements before this work. However, we were happy to find out that many of the solar land use ranges and estimates used in the literature are very close to actual solar land use requirements that we found.”

These land-use estimates can also be compared with other energy-production land uses. For example, a study by Vasilis Fthenakis and Hung Chul Kim of Columbia University (2009) found that, on a life-cycle electricity-output basis—including direct and indirect land transformation—utility-scale PV in the U.S. Southwest requires less land than the average U.S. power plant using surface-mined coal.

A previous NREL report, “Land-use Requirements and the Per-capita Solar Footprint for Photovoltaic Generation in the United States,” had estimated that if solar energy was to meet 100% of all electricity demand in the United States, it would take up 0.6% of the total area in the United States.

This time, the data come not from estimates or calculations, but from compiling land use numbers from actual solar power plants. Every solar energy site analyzed in the study is listed in a detailed appendix.

“All these land use numbers are being thrown around, but there has been nothing concrete,” Ong said. “Now people will actually have numbers to cite when they conduct analyses and publish reports.”

NREL previously had released a report on land-use needs for wind power. Doing the same other generation resources including coal, natural gas and nuclear — estimating land use via huge sample sizes — would help inform decisions, Denholm said.

The report provides fundamental data that can be used to understand the impacts and benefits of solar. “Modelers and analysts, people looking 10 or 20 years into the future can use this report to evaluate the impacts solar energy may have,” Denholm said.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

Visit NREL online at www.nrel.gov

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>