Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL Report Firms Up Land-Use Requirements of Solar

07.08.2013
Study shows solar for 1,000 homes would require 32 acres

The Energy Department’s National Renewable Energy Laboratory (NREL) has published a report on the land use requirements of solar power plants based on actual land-use practices from existing solar facilities.

“Having real data from a majority of the solar plants in the United States will help people make proper comparisons and informed decisions,” lead author Sean Ong said. The report, “Land-use Requirements for Solar Power Plants in the United States,”PDF was written with NREL colleagues Clinton Campbell, Robert Margolis, Paul Denholm and Garvin Heath.

Ong gathered data from 72% of the solar power plants installed or under construction in the United States. Among the findings:

A large fixed tilt photovoltaic (PV) plant that generates 1 gigawatt-hour per year requires, on average, 2.8 acres for the solar panels. This means that a solar power plant that provides all of the electricity for 1,000 homes would require 32 acres of land.

Small single-axis PV systems require on average 2.9 acres per annual gigawatt-hour – or 3.8 acres when considering all unused area that falls inside the project boundary.

Concentrating solar power plants require on average 2.7 acres for solar collectors and other equipment per annual gigawatt-hour; 3.5 acres for all land enclosed within the project boundary.

By the third quarter of 2012, the United States had deployed more than 2.1 gigawatts of utility-scale solar generation capacity. Another 4.6 gigawatts was under construction. There has been a long-running debate over the comparative land needs for various forms of energy, old and new. But that’s not the purpose of the new report, Ong and Denholm emphasized.

“The numbers aren’t good news or bad news,” Denholm said. “It’s just that there was not an understanding of actual land-use requirements before this work. However, we were happy to find out that many of the solar land use ranges and estimates used in the literature are very close to actual solar land use requirements that we found.”

These land-use estimates can also be compared with other energy-production land uses. For example, a study by Vasilis Fthenakis and Hung Chul Kim of Columbia University (2009) found that, on a life-cycle electricity-output basis—including direct and indirect land transformation—utility-scale PV in the U.S. Southwest requires less land than the average U.S. power plant using surface-mined coal.

A previous NREL report, “Land-use Requirements and the Per-capita Solar Footprint for Photovoltaic Generation in the United States,” had estimated that if solar energy was to meet 100% of all electricity demand in the United States, it would take up 0.6% of the total area in the United States.

This time, the data come not from estimates or calculations, but from compiling land use numbers from actual solar power plants. Every solar energy site analyzed in the study is listed in a detailed appendix.

“All these land use numbers are being thrown around, but there has been nothing concrete,” Ong said. “Now people will actually have numbers to cite when they conduct analyses and publish reports.”

NREL previously had released a report on land-use needs for wind power. Doing the same other generation resources including coal, natural gas and nuclear — estimating land use via huge sample sizes — would help inform decisions, Denholm said.

The report provides fundamental data that can be used to understand the impacts and benefits of solar. “Modelers and analysts, people looking 10 or 20 years into the future can use this report to evaluate the impacts solar energy may have,” Denholm said.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

Visit NREL online at www.nrel.gov

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>