Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL Quantifies Significant Value in Concentrating Solar Power

08.05.2013
CSP with thermal energy storage boosts California electric grid
Researchers from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have quantified the significant value that concentrating solar power (CSP) plants can add to an electric grid.

The NREL researchers evaluated the operational impacts of CSP systems with thermal energy storage within the California electric grid managed by the California Independent System Operator (CAISO). NREL used a commercial production cost model called PLEXOS to help plan system expansion, to evaluate aspects of system reliability, and to estimate fuel cost, emissions, and other operational factors within the CAISO system. The analysis is detailed in a recent publication, Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario, by Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos.

NREL’s analysis was considered within the context of California’s renewable portfolio standard (RPS), which requires 33% of power be supplied by renewables by 2020. The specific focus was on the “Environmentally Constrained” 33% RPS scenario, which includes a high contribution of generation from photovoltaic solar energy systems. By also considering how the state could take advantage of CSP with thermal storage, NREL used the PLEXOS model to quantify the value of CSP in reducing the need for conventional power generation from fossil fuels, and compared this value to other sources of generation, including photovoltaics, which supply variable energy depending on the amount of sunlight available.

To perform this analysis, NREL Senior Analyst Paul Denholm explains, “We created a baseline scenario, then added four types of generators—a baseload generator with constant output, a photovoltaic system, a CSP plant providing dispatchable energy – or power that can be turned on or off on demand -- and another CSP plant providing both energy and operating reserves.”

The analysis demonstrated several valuable properties of dispatchable CSP, such as its ability to generate power during high-value periods when electricity demand is high, and its capability to be turned off during lower-value periods. Of key interest, NREL found that significant operational value is derived when CSP is allowed to provide reserve power, including frequently operating at less than full load, which would be a substantial change in operational practice.

Mark Mehos, manager of NREL’s CSP Program, emphasizes a couple other conclusions from their analysis: “CSP plants switched on during periods of highest consumer demand for electricity resulted in very high capacity value. And the difference in value in CSP plants with and without thermal energy storage depends greatly on the amount of other variable-generation renewable energy sources on the grid, such as wind and photovoltaics.”

NREL’s study has helped to develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools. It has also quantified the value of adding thermal storage to CSP in a scenario of high levels of renewable energy in California.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht Hybrid storage with market potential: Battery production goes Industrie 4.0
01.03.2017 | Fraunhofer Institute for Applied Polymer Research IPA

nachricht WSU research advances energy savings for oil, gas industries
28.02.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>