Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL Quantifies Significant Value in Concentrating Solar Power

08.05.2013
CSP with thermal energy storage boosts California electric grid
Researchers from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have quantified the significant value that concentrating solar power (CSP) plants can add to an electric grid.

The NREL researchers evaluated the operational impacts of CSP systems with thermal energy storage within the California electric grid managed by the California Independent System Operator (CAISO). NREL used a commercial production cost model called PLEXOS to help plan system expansion, to evaluate aspects of system reliability, and to estimate fuel cost, emissions, and other operational factors within the CAISO system. The analysis is detailed in a recent publication, Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario, by Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos.

NREL’s analysis was considered within the context of California’s renewable portfolio standard (RPS), which requires 33% of power be supplied by renewables by 2020. The specific focus was on the “Environmentally Constrained” 33% RPS scenario, which includes a high contribution of generation from photovoltaic solar energy systems. By also considering how the state could take advantage of CSP with thermal storage, NREL used the PLEXOS model to quantify the value of CSP in reducing the need for conventional power generation from fossil fuels, and compared this value to other sources of generation, including photovoltaics, which supply variable energy depending on the amount of sunlight available.

To perform this analysis, NREL Senior Analyst Paul Denholm explains, “We created a baseline scenario, then added four types of generators—a baseload generator with constant output, a photovoltaic system, a CSP plant providing dispatchable energy – or power that can be turned on or off on demand -- and another CSP plant providing both energy and operating reserves.”

The analysis demonstrated several valuable properties of dispatchable CSP, such as its ability to generate power during high-value periods when electricity demand is high, and its capability to be turned off during lower-value periods. Of key interest, NREL found that significant operational value is derived when CSP is allowed to provide reserve power, including frequently operating at less than full load, which would be a substantial change in operational practice.

Mark Mehos, manager of NREL’s CSP Program, emphasizes a couple other conclusions from their analysis: “CSP plants switched on during periods of highest consumer demand for electricity resulted in very high capacity value. And the difference in value in CSP plants with and without thermal energy storage depends greatly on the amount of other variable-generation renewable energy sources on the grid, such as wind and photovoltaics.”

NREL’s study has helped to develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools. It has also quantified the value of adding thermal storage to CSP in a scenario of high levels of renewable energy in California.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>