Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL calculates emissions & costs of power plant cycling necessary for increased wind and solar

25.09.2013
New research from the Energy Department’s National Renewable Energy Laboratory (NREL) quantifies the potential impacts of increasing wind and solar power generation on the operators of fossil-fueled power plants in the West.

To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers – a practice called cycling.

The study finds that the carbon emissions induced by more frequent cycling are negligible (

The study also finds that high levels of wind and solar power would reduce fossil fuel costs by approximately $7 billion per year across the West, while incurring cycling costs of $35 million to $157 million per year. For the average fossil-fueled plant, this results in an increase in operations and maintenance costs of $0.47 to $1.28 per megawatt-hour (MWh) of generation.

“Grid operators have always cycled power plants to accommodate fluctuations in electricity demand as well as abrupt outages at conventional power plants, and grid operators use the same tool to accommodate high levels of wind and solar generation,” said Debra Lew, NREL project manager for the study. “Increased cycling to accommodate high levels of wind and solar generation increases operating costs by 2% to 5% for the average fossil-fueled plant. However, our simulations show that from a system perspective, avoided fuel costs are far greater than the increased cycling costs for fossil-fueled plants.”

Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) is a follow up to the WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating high levels of wind and solar power into the western electricity grid. WWSIS found it to be technically feasible if certain operational changes could be made, but the first study raised questions about the impact of cycling on wear-and-tear costs and emissions.

To calculate wear-and-tear costs and emissions impacts for the new study, NREL designed five hypothetical scenarios to examine generating up to 33% wind and solar energy on the U.S. portion of the Western Interconnection power system for the year 2020. This is equivalent to a quarter of the power in the Western Interconnection (including Canada and Mexico) coming from wind and solar energy on an annual basis. The study models cycling impacts representing a range of wind and solar energy levels between none and 33%, and is not an endorsement of any particular level.

The study assumes a future average natural gas price of $4.60/MMBtu, significant cooperation between balancing authorities, and optimal usage of transmission capacity (i.e., not reserving transmission for contractual obligations). NREL modeled operations of the entire Western Interconnection for that year in five-minute intervals to understand potential impacts within every hour. With these assumptions, the study finds that the high wind and solar scenarios reduce CO2 emissions by 29%–34% across the Western Interconnection, with cycling having a negligible impact.

Cycling lessens the SO2 benefit by 2%–5%, so that SO2 emissions are reduced by 14%–24% in the high scenarios. These impacts are modeled on an overall Western Interconnection level, and changes on a regional basis could vary. Further, the study does not examine cycling impacts on mercury and air toxic control equipment now being retrofitted on coal units to comply with recent EPA regulations.

Cycling actually improves the NOx benefit by 1%–2%, so that NOx emissions are reduced by 16%–22% in the high scenarios. This is because the average coal plant in the West has a lower NOx emissions rate at partial output than at full output.

"Adding wind and solar to the grid greatly reduces the amount of fossil fuel — and associated emissions — that would have been burned to provide power,” Lew said. “Our high wind and solar scenarios, in which one-fourth of the energy in the entire western grid would come from these sources, reduced the carbon footprint of the western grid by about one-third. Cycling induces some inefficiencies, but the carbon emission reduction is impacted by much less than 1%.”

WWSIS-2 does not consider other factors such as capital costs of construction for wind, solar, fossil-fueled power plants, or transmission. These costs are significant, but outside the scope of this study, which focuses on operations.

“From a system perspective, high proportions of wind and solar result in lower emissions and fuel costs for utility operators,” Lew said. “The potential cycling impacts offset a small percentage of these reductions.”

According to the study, on average, 4 MWh of renewables displace 1 MWh of coal generation and 3 MWh of natural gas. The biggest potential cycling impact is the significant increase in ramping of coal units. Other findings include:
Because of sunset and sunrise, solar power creates the biggest ramping needs on the grid in this study. However, because we know the path of the sun through the sky every day of the year, system operators can predict these large ramping needs and plan accordingly. Solar variability due to fast-moving clouds is much less predictable, but it creates relatively smaller ramping needs.
Errors in day-ahead wind forecasts can make it challenging for operators to decide which power plants need to be online the next day. However, because forecast accuracy increases four hours ahead compared with 24 hours ahead, a four-hour-ahead decision on whether to start up those power plants that can be ramped up relatively quickly can help to mitigate these forecast errors.

Despite the differences between wind and solar in terms of grid operations, the study finds their impacts on system-wide operational costs are remarkably similar.

WWSIS-2 was supported by the Energy Department’s Office of Energy Efficiency and Renewable Energy, as well as its Office of Electricity Delivery and Energy Reliability. The study was undertaken by NREL, GE, Intertek-APTECH, and REPPAE, and underwent a rigorous technical review process that included utilities, researchers, and analysts. The study can be downloaded at www.nrel.gov/wwsis.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>