Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST team demystifies utility of power factor correction devices

21.12.2009
If you've seen an Internet ad for capacitor-type power factor correction devices, you might be led to believe that using one can save you money on your residential electricity bill. However, a team including specialists at the National Institute of Standards and Technology (NIST) have recently explained* why the devices actually provide no savings by discussing the underlying physics.

The devices—sometimes referred to as Amp Reduction Units or KVARs**—are touted as good investments because they reduce the amount of current drawn from power lines while simultaneously providing the necessary amount of current to appliances inside the house.

Though engineers elsewhere have discredited the devices for use in typical residences already, NIST physicist Martin Misakian and two of his colleagues decided to write a brief primer describing the devices' inner workings for readers who are not power engineers, but who still have some technical background.

"One of the important functions of our primer is to remove the mystery of how current from the power line can decrease while at the same time current going to an appliance remains the same," says Misakian. The nine-page Technical Note explains this result in terms that might interest readers with knowledge of college-level physical sciences. It shows that although the devices can indeed reduce current flow from the power line, but it is not just the current flowing from the power line that determines your electric bill, but the product of the power factor and the current. Though current decreases with a power factor correction device, the power factor increases correspondingly, meaning the product of the two remains the same—with or without the device. Because a residential electric bill is proportional to this product, the cost remains unchanged.

Power factor correction devices have some use, though. The authors point out that while they will not reduce the average homeowner's bill, they may benefit the environment. When electricity travels from a local transformer to a residence, some power is lost due to electrical resistance. But because a utility would need to supply less current to a residence that employs a power factor correction device, these losses would decrease—thus potentially reducing the amount of greenhouse gases a fossil fuel-burning utility would emit. But while the primer does provide a rough calculation of a utility's savings by considering the operation of a residential air conditioner, Misakian says readers must investigate the details of these options for themselves.

"If homeowners wanted to help reduce the amount of carbon dioxide produced, they could install a device," Misakian says, "but they would also have to consider the greenhouse gases generated during the fabrication of the device itself."

* M. Misakian, T.L. Nelson and W.E. Feero. Regarding Electric Energy Savings, Power Factors, and Carbon Footprints: A Primer. NIST Technical Note 1654, online at www.nist.gov/cgi-bin//get_pdf.cgi?pub_id=903669.

** From "kilovolt ampere reactive," a unit used to measure reactive power.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>