Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST measurement advance could speed innovation in solar devices

27.07.2012
A new versatile measurement system devised by researchers at the National Institute of Standards and Technology (NIST) accurately and quickly measures the electric power output of solar energy devices, capabilities useful to researchers and manufacturers working to develop and make next-generation solar energy cells.

Innovative devices that convert sunlight to electric power more efficiently and cost effectively than the current generation of solar cell technology are the objects of a global pursuit—means to reducing fossil-fuel consumption and to securing pole position in the competition for fast-growing international markets for clean energy sources.

As reported in the journal Applied Optics,* the NIST team has combined 32 LEDs—each generating light from different segments of the solar spectrum—and other off-the-shelf equipment with their custom-made technologies to build a system that measures the wavelength-dependent quantum efficiency of solar devices over a relatively large area.

Anticipated advantages over current approaches—most of which use incandescent lamps or xenon arc and other types of discharge lamps—are greater speed and ease of operation, more uniform illumination, and a service life that is about 10 times longer.

The new NIST system for measuring spectral response easily accommodates two unique but complementary methods for determining how much electric current a solar, or photovoltaic (PV), device generates when hit by a standard amount of sunlight. Both methods are straightforward, and they use the same hardware setup.

With either method, the automated system produces measurements more rapidly than current instruments used to simulate solar radiation and characterize how efficiently a device converts light energy to electric energy.

One method, which activates the LED lights sequentially, is less subject to interference than the other technique, and yields a spectral response measurement in about 6 minutes. With the other method, all 32 LEDs are activated simultaneously, but each generates pulses of light at a different rate. The solar response of a PV device over the entire LED-blended spectrum can be determined in about 4 seconds.

Though more susceptible to interference, the faster method has potential for in-line manufacturing tests for ensuring quality, the researchers write.

The new system represents a major stride toward a technical goal set by a group of solar energy experts convened by NIST in late 2010.** "To accelerate all types of PV development and lower costs through more accurate assessment of performance," these experts set the goal to achieve spectral response measurements in fewer than 10 minutes.

While the new system beats the time requirement, the NIST team must push their technology further to match related targets that are part of the goal. Their to-do list includes matching or exceeding the energy intensity of the sun, broadening the LED-synthesized spectrum to include the infrared portion of the sun's output, and consistently achieving measurement results with uncertainties of less than 1 percent.

With their work to date, however, the NIST researchers have demonstrated that LEDs are now "technologically viable" for use in solar simulators and for characterizing PV and other photoelectric devices, says NIST physicist Behrang Hamadani.

* B. H. Hamadani, J. Roller, B. Dougherty and H. W. Yoon. Versatile Light-Emitting-Diode-based Spectral Response Measurement System for Photovoltaic Device Characterization. Applied Optics Vol. 51, No. 19, July 1, 2102.

**Foundations for Innovation: Photovoltaic Technologies for the 21st Century (Report of the Steering Committee for Advancing Solar Photovoltaic Technologies). Available at: http://events.energetics.com/NISTGrandChallenges2010/index.html

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>