Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST develops experimental validation tool for cell phone forensics

03.12.2009
Viewers of TV dramas don't focus on the technology behind how a forensics crime team tracks a terrorist or drug ring using cell phone data, but scientists at the National Institute of Standards and Technology (NIST) do. NIST researchers have developed a new technique aimed at improving the validation of a crime lab's cell phone forensics tools. Early experiments show promise for easier, faster and more rigorous assessments than with existing methods.

Cell phones reveal much about our daily communications—the who, when and what of our calls and texts. A small chip card within most phones, called an identity module, stores this and other data for a subscriber. A subscriber identity module (SIM) accommodates phonebook entries, recently dialed numbers, text messages and cellular carrier information. Forensic examiners use off-the-shelf software tools to extract the data, allowing them to "connect the dots" in a criminal case such as identifying affiliations or detecting mobile phone activity around the time of an event.

But for this information to be used as evidence in court or other formal proceedings, the software tools that forensic teams employ are normally validated to determine suitability for use. Currently, preparing test materials for assessing cell phone tools is labor intensive and may require learning new command languages to perform the process.

NIST scientists detail their proof-of-concept research in a NIST Interagency Report, Mobile Forensic Reference Materials: A Methodology and Reification (available online at http://csrc.nist.gov/publications/nistir/ir7617/nistir-7617.pdf.) They also developed an experimental application, called SIMfill, and a preliminary test dataset that follows the methodology described in the report. SIMfill can be used to automatically upload cell phone data such as phone numbers and text messages to "populate" test SIMs that can then be recovered by forensic cell phone tools. In this way, examiners can use SIMfill as one method to assess the quality of their off-the-shelf tool.

The SIMfill software and dataset may be downloaded for free at http://csrc.nist.gov/groups/SNS/mobile_security/mobile_forensics_software.html.

"In this report," explains coauthor Wayne Jansen, "we document the results of a recent experiment with a number of commonly used mobile phone forensics tools. No tool was found to work perfectly and some worked poorly on fairly simple test cases."

The automated features of the applications and XML representation of test data allow technicians to develop new test cases easily. This offers a simple alternative to using manual means or specialized tools with higher learning curves. The data can be adapted to different languages with alternate character sets.

"Our research was a proof of concept," Jansen says. "Hopefully, forensic examiners will use our work to validate mobile forensics tools thoroughly before they employ them." The next step in the research is open. Scientists could expand the technique for mobile handsets and other types of identity modules, or the forensic community could decide to adopt this dataset and application as an open source project, according to Jansen.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: NIST SIMfill cell phone forensic software tool text messages

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>