Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST 'Vision Science Facility' aims for lighting revolution

Light-emitting diodes, or LEDs, have become popular with backpackers and cyclists who mount them on headbands for a reliable, hands-free source of illumination. Now, a new lab at the National Institute of Standards and Technology (NIST) is helping to bring these tiny but brilliant devices into your home, to help save both energy costs and the environment.

"LEDs can be very energy efficient, and they are a lot smaller and last a lot longer than light bulbs," says NIST vision scientist Wendy Davis. "They're what we'll likely use in the future to light our houses and public places."

It's a vision of illumination's future. And to realize it, Davis, along with Yoshi Ohno and a team of physicists, created the NIST Spectrally Tunable Lighting Facility (STLF). Their main goal is to improve the quality of the light that LEDs produce, so that when you turn them on, home feels homey.

"Everyone wants light that appears natural and is pleasing to the eye, but with LEDs we're not consistently there yet," Davis says. "LEDs offer a lot of advantages over incandescent and fluorescent lighting, but they don't always emit light that looks 'right.'"

About 12 percent of electricity consumed in the United States powers lights. Using LEDs wherever practical would halve that, but a few problems must be overcome. When a newfangled device goes up against a product as historically omnipresent as the light bulb, the newcomer has to prove it can work better than the incumbent, and that's where Davis and her colleagues are focusing their effort.

The new STLF distinguishes itself from most optical technology labs in that it concentrates on the relationship between physical measurements of light and human perception of light and color. Here, scientists experiment with combining LEDs of different hues to produce an overall light color that pleases the eye.

The lab space makes sense even to a nonscientist. One section is decorated with couches, tables, and food-filled plates, just like a living room—but above, hundreds of LEDs cover the ceiling like stars in the sky. Davis can activate varied groups of them like color-coordinated constellations. Adjusting the level of different colors demonstrates the effect lighting has on the appearance of the food and furniture below.

Learning from efforts like this is helping the team develop a way to quantify how LEDs affect the colors of objects in ways meaningful to the lighting industry. They are currently developing a measurement tool called the Color Quality Scale to help manufacturers develop LEDs for general lighting.

"Because the light emitted by LEDs is different from the light we get from other lighting technologies, the way that we measure color quality doesn't always work for them. At this point, LED manufacturers don't have a reliable way to determine the color performance of their products," Davis says. "If we don't handle this issue now, it could create big problems for future LED lighting products, because bad color means unhappy consumers. We want to use measurement, which is a NIST specialty, to nip this problem in the bud."

See YouTube video of the new lab at:

Chad Boutin | EurekAlert!
Further information:

Further reports about: LED NIST STLF energy costs light-emitting diodes source of illumination

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>