Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Wi-Fi antenna enhances wireless coverage

02.06.2015

Researchers at Universiti Teknologi MARA in Malaysia have succeeded in using ionised gas in a common fluorescent light tube as an antenna for a Wi-Fi Internet router.

The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end.


The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end.

Wi-Fi routers are essentially two-way radios that connect digital devices to the Internet. But in many buildings, providing complete coverage is a challenge. Radio “dead spots” can occur in areas where solid walls or appliances block a router’s signal entirely, or degrade it to become so weak that a portable Wi-Fi device, such as a tablet or phone, cannot connect reliably.

When electricity flows through the argon-mercury vapour in a fluorescent tube, it forms an ionised gas or plasma. Plasma has conducting properties comparable to a common metal radio antenna.

This allows an attached router to send and receive radio signals through the light tube on the standard 2.4-gigahertz Wi-Fi frequency in exactly the same way it does through a regular antenna. The router’s radio waves can ionise the gas in the tube, so it acts as an antenna whether the light is on or off.

According to the research team, the plasma found in a standard 62-centimetre light tube is highly conductive and signal measurements on a test device show that it’s strong and stable. Thus plasma compares favourably with standard metal Wi-Fi antennas for transmitting and receiving.

The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end. The coil passes the router’s radio signal through the glass of the fluorescent tube and into the plasma.

The team says that multiple antennas could be connected to a single router through a building’s electrical wiring using existing Wi-Fi standards. This would create a separate antenna in every room where there is a dedicated fluorescent light fixture and provide low cost building-wide wireless Internet coverage.

Further studies by the team may include adding more fluorescent tubes in various configurations to investigate the capability and performance of multiple plasma antenna arrays. One possible application could involve installing this technology in outdoor billboard lights. Each plasma antenna array would then be integrated with a Wi-Fi router to provide large-scale, system-wide wireless communication.

For further information contact:
Dr Mohd Tarmizi Ali
Associate Professor and Head of the Centre for
Communication Engineering Studies
Faculty of Electrical Engineering
Universiti Teknologi MARA, Malaysia
E-mail: mizi732002@salam.uitm.edu.my

*This article also appears in Asia Research News 2015 (P.52).


Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>