Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Wi-Fi antenna enhances wireless coverage

02.06.2015

Researchers at Universiti Teknologi MARA in Malaysia have succeeded in using ionised gas in a common fluorescent light tube as an antenna for a Wi-Fi Internet router.

The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end.


The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end.

Wi-Fi routers are essentially two-way radios that connect digital devices to the Internet. But in many buildings, providing complete coverage is a challenge. Radio “dead spots” can occur in areas where solid walls or appliances block a router’s signal entirely, or degrade it to become so weak that a portable Wi-Fi device, such as a tablet or phone, cannot connect reliably.

When electricity flows through the argon-mercury vapour in a fluorescent tube, it forms an ionised gas or plasma. Plasma has conducting properties comparable to a common metal radio antenna.

This allows an attached router to send and receive radio signals through the light tube on the standard 2.4-gigahertz Wi-Fi frequency in exactly the same way it does through a regular antenna. The router’s radio waves can ionise the gas in the tube, so it acts as an antenna whether the light is on or off.

According to the research team, the plasma found in a standard 62-centimetre light tube is highly conductive and signal measurements on a test device show that it’s strong and stable. Thus plasma compares favourably with standard metal Wi-Fi antennas for transmitting and receiving.

The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end. The coil passes the router’s radio signal through the glass of the fluorescent tube and into the plasma.

The team says that multiple antennas could be connected to a single router through a building’s electrical wiring using existing Wi-Fi standards. This would create a separate antenna in every room where there is a dedicated fluorescent light fixture and provide low cost building-wide wireless Internet coverage.

Further studies by the team may include adding more fluorescent tubes in various configurations to investigate the capability and performance of multiple plasma antenna arrays. One possible application could involve installing this technology in outdoor billboard lights. Each plasma antenna array would then be integrated with a Wi-Fi router to provide large-scale, system-wide wireless communication.

For further information contact:
Dr Mohd Tarmizi Ali
Associate Professor and Head of the Centre for
Communication Engineering Studies
Faculty of Electrical Engineering
Universiti Teknologi MARA, Malaysia
E-mail: mizi732002@salam.uitm.edu.my

*This article also appears in Asia Research News 2015 (P.52).


Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Darmarajah Nadarajah | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>