Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'tunable' semiconductors will allow better detectors, solar cells

14.04.2014

One of the great problems in physics is the detection of electromagnetic radiation – that is, light – which lies outside the small range of wavelengths that the human eye can see. Think X-rays, for example, or radio waves.

Now, researchers have discovered a way to use existing semiconductors to detect a far wider range of light than is now possible, well into the infrared range. The team hopes to use the technology in detectors, obviously, but also in improved solar cells that could absorb infrared light as well as the sun's visible rays.

"This technology will also allow dual or multiband detectors to be developed, which could be used to reduce false positives in identifying, for example, toxic gases," said Unil Perera, a Regents' Professor of Physics at Georgia State University. Perera leads the Optoelectronics Research Laboratory, where fellow author and postdoctoral fellow Yan-Feng Lao is also a member. The research team also included scientists from the University of Leeds in England and Shanghai Jiao Tong University in China.

To understand the team's breakthrough, it's important to understand how semiconductors work. Basically, a semiconductor is exactly what its name implies – a material that will conduct an electromagnetic current, but not always. An external energy source must be used to get those electrons moving.

But infrared light doesn't carry a lot of energy, and won't cause many semiconductors to react. And without a reaction, there's nothing to detect.

Until now, the only solution would have been to find a semiconductor material that would respond to long-wavelength, low-energy light like the infrared spectrum.

But instead, the researchers worked around the problem by adding another light source to their device. The extra light source primes the semiconductor with energy, like running hot water over a jar lid to loosen it. When a low-energy, long-wavelength beam comes along, it pushes the material over the top, causing a detectable reaction.

The new and improved device can detect wavelengths up to at least the 55 micrometer range, whereas before the same detector could only see wavelengths of about 4 micrometers. The team has run simulations showing that a refined version of the device could detect wavelengths up to 100 micrometers long.

Edmund Linfield, professor of terahertz electronics at the University of Leeds, whose team built the patterned semiconductors used in the new technique, said, "This is a really exciting breakthrough and opens up the opportunity to explore a wide range of new device concepts including more efficient photovoltaics and photodetectors."

Perera and Lao have filed a U.S. patent application for their detector design.

###

"Tunable hot-carrier photodetection beyond the band-gap spectral limit" by Yan-Feng Lao, A.G. Unil Perera, L.H. Li, S.P. Khanna, E.H. Linfield and H.C. Liu is in the May issue of Nature Photonics.

The work was supported by the U.S. Army Research Office, the U.S. National Science Foundation, the UK Engineering and Physical Sciences Research Council, and the European Research Council Advanced Grant "TOSCA."

Ann Claycombe | Eurek Alert!

Further reports about: Nature Photonics Physics Science detector reaction semiconductors spectrum wavelengths

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>