Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New test procedure for developing quick-charging lithium-ion batteries


When lithium-ion batteries are charged too quickly, metallic lithium gets deposited on the anodes. This reduces battery capacity and lifespan and can even destroy the batteries. Scientists at the Forschungszentrum Jülich and the Technical University of Munich (TUM) have now presented a process that, for the first time ever, allows this so-called lithium plating process to be investigated directly. This puts new strategies for quick-charging strategies close at hand.

Lithium plating, the depositing of metallic lithium at the anodes of lithium-ion batteries, is one of the primary factors that limits charging current. The performance of batteries suffers significantly from these metallic deposits. In extreme cases this can result in short circuits and even batteries going up in flames.

Test cell for lithium ion batteries

Forschungszentrum Jülich / T. Schlößer

Analysis of a test cell with EPR spektroskopy

Forschungszentrum Jülich / T. Schlößer

When charging batteries, the positively charged lithium ions move through the liquid electrolytes and are deposited in the porous graphite anodes. However, the larger the current and the lower the temperature, the greater the probability that the lithium ions will not be deposited within the electrodes, as desired, but rather as a solid metallic layer on the outer surface.

Indirect evidence does not serve the goal

Even though this phenomenon is basically well-known, many aspects remain shrouded in mystery. Until now, it was not possible to directly observe how and under which circumstances lithium plating takes place. “Using traditional methods of microscopy, we can only observe a battery after the fact, because it needs to be cut open,” explains Dr. Josef Granwehr at the Jülich Institute of Energy and Climate Research (IEK-9). “In the process, further reactions that distort the results become inevitable.”

Even highly developed processes like neutron scattering allow for only indirect analyses. Compounding the problem is the fact that available slots for measurements at research reactors and large particle accelerators are scarce. This makes these tools more suitable for fundamental investigations than for tedious, practical test series.

Electrons show the way

The electron paramagnetic resonance (EPR) spectroscopy process presented in the renowned scientific journal Materials Today, on the other hand, can be readily integrated into laboratory procedures – with only moderate investment. The method is akin to the better-known nuclear magnetic resonance (NMR) spectroscopy, albeit focusses on electron spins rather than atomic nuclei.

“Electrons are placed in an externally applied, static magnetic field,” explains Granwehr. Unpaired electrons in the sample are “sounded out” using microwaves. In the magnetic field, these stimulate the electrons to flip, which can be measured via the associated drop in microwave radiation intensity. EPR can differentiate between metallic lithium plating and lithium embedded in the graphite anodes.

The test cell is the key

“The key to detecting lithium plating using EPR was the construction of a test cell compatible with the requirements of EPR spectroscopy while at the same time exhibiting good electrochemical properties,” explains lead author Dr. Johannes Wandt. “The geometry is also important. Precise measurement results are contingent on the sample being exposed to the magnetic field but not the inevitably present electric field.”
To ensure this, Wandt developed a rod-shaped cell while he was a doctoral candidate in the group of Prof. Hubert A. Gasteiger (Chair of Technical Electrochemistry) at TUM that allows the formation of metallic lithium to be detected directly and with quantitative precision.

The right strategy for quick charging

“Using this process, it is now for the first time possible to investigate lithium plating and the associated processes in a differentiated manner that is relevant to a whole array of applications,” explains Rüdiger-A. Eichel, a director at the Jülich Institute of Energy and Climate Research (IEK-9). “One example is the development of safe and at the same time fast charging protocols. Our process make determining the maximum charging current before lithium plating sets in possible, as well as ascertaining other boundary conditions like temperature and the influence of electrode geometry.”

Beyond this, the methodology is well suited as a test procedure for a variety of battery materials, for example the development of new admixtures that suppress lithium plating.

The research was funded by the German Federal Ministry of Education and Research (BMBF) in the context of the ExZellTUM II project and the Bavarian State Ministry of Economic Affairs and Media, Energy and Technology in the context of the EEBatt project. The EEBatt project is part of the “TUM.Energy” priority program coordinated by the Munich School of Engineering (MSE).

Original publication:
Johannes Wandt, Peter Jakes, Josef Granwehr, Rüdiger-A. Eichel, Hubert A. Gasteiger
Quantitative and Time Resolved Detection of Lithium Plating on Graphite Anodes in Lithium Ion Batteries


Prof. Dr. Josef Granwehr
Institute of Energy- und Climate Research, Fundamental Electrochemistry (IEK-9)
Tel.: +49-2461 61-96400

Prof. Dr. Rüdiger-A. Eichel
Director Institute of Energy- und Climate Research, Fundamental Electrochemistry (IEK-9)
Tel.: +49 2461 61-5124

Dr. Johannes Wandt

Press contact:

Dr. Regine Panknin
Forschungszentrum Jülich, Corporate communications
Tel. 02461 61-9054

Tobias Schlößer
Forschungszentrum Jülich, Corporate communications
Tel. 02461 61-4771

Weitere Informationen: - Pressemitteilung

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>