Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test procedure for developing quick-charging lithium-ion batteries

07.12.2017

When lithium-ion batteries are charged too quickly, metallic lithium gets deposited on the anodes. This reduces battery capacity and lifespan and can even destroy the batteries. Scientists at the Forschungszentrum Jülich and the Technical University of Munich (TUM) have now presented a process that, for the first time ever, allows this so-called lithium plating process to be investigated directly. This puts new strategies for quick-charging strategies close at hand.

Lithium plating, the depositing of metallic lithium at the anodes of lithium-ion batteries, is one of the primary factors that limits charging current. The performance of batteries suffers significantly from these metallic deposits. In extreme cases this can result in short circuits and even batteries going up in flames.


Test cell for lithium ion batteries

Forschungszentrum Jülich / T. Schlößer


Analysis of a test cell with EPR spektroskopy

Forschungszentrum Jülich / T. Schlößer

When charging batteries, the positively charged lithium ions move through the liquid electrolytes and are deposited in the porous graphite anodes. However, the larger the current and the lower the temperature, the greater the probability that the lithium ions will not be deposited within the electrodes, as desired, but rather as a solid metallic layer on the outer surface.

Indirect evidence does not serve the goal

Even though this phenomenon is basically well-known, many aspects remain shrouded in mystery. Until now, it was not possible to directly observe how and under which circumstances lithium plating takes place. “Using traditional methods of microscopy, we can only observe a battery after the fact, because it needs to be cut open,” explains Dr. Josef Granwehr at the Jülich Institute of Energy and Climate Research (IEK-9). “In the process, further reactions that distort the results become inevitable.”

Even highly developed processes like neutron scattering allow for only indirect analyses. Compounding the problem is the fact that available slots for measurements at research reactors and large particle accelerators are scarce. This makes these tools more suitable for fundamental investigations than for tedious, practical test series.

Electrons show the way

The electron paramagnetic resonance (EPR) spectroscopy process presented in the renowned scientific journal Materials Today, on the other hand, can be readily integrated into laboratory procedures – with only moderate investment. The method is akin to the better-known nuclear magnetic resonance (NMR) spectroscopy, albeit focusses on electron spins rather than atomic nuclei.

“Electrons are placed in an externally applied, static magnetic field,” explains Granwehr. Unpaired electrons in the sample are “sounded out” using microwaves. In the magnetic field, these stimulate the electrons to flip, which can be measured via the associated drop in microwave radiation intensity. EPR can differentiate between metallic lithium plating and lithium embedded in the graphite anodes.

The test cell is the key

“The key to detecting lithium plating using EPR was the construction of a test cell compatible with the requirements of EPR spectroscopy while at the same time exhibiting good electrochemical properties,” explains lead author Dr. Johannes Wandt. “The geometry is also important. Precise measurement results are contingent on the sample being exposed to the magnetic field but not the inevitably present electric field.”
To ensure this, Wandt developed a rod-shaped cell while he was a doctoral candidate in the group of Prof. Hubert A. Gasteiger (Chair of Technical Electrochemistry) at TUM that allows the formation of metallic lithium to be detected directly and with quantitative precision.

The right strategy for quick charging

“Using this process, it is now for the first time possible to investigate lithium plating and the associated processes in a differentiated manner that is relevant to a whole array of applications,” explains Rüdiger-A. Eichel, a director at the Jülich Institute of Energy and Climate Research (IEK-9). “One example is the development of safe and at the same time fast charging protocols. Our process make determining the maximum charging current before lithium plating sets in possible, as well as ascertaining other boundary conditions like temperature and the influence of electrode geometry.”

Beyond this, the methodology is well suited as a test procedure for a variety of battery materials, for example the development of new admixtures that suppress lithium plating.

The research was funded by the German Federal Ministry of Education and Research (BMBF) in the context of the ExZellTUM II project and the Bavarian State Ministry of Economic Affairs and Media, Energy and Technology in the context of the EEBatt project. The EEBatt project is part of the “TUM.Energy” priority program coordinated by the Munich School of Engineering (MSE).

Original publication:
Johannes Wandt, Peter Jakes, Josef Granwehr, Rüdiger-A. Eichel, Hubert A. Gasteiger
Quantitative and Time Resolved Detection of Lithium Plating on Graphite Anodes in Lithium Ion Batteries

Contact:

Prof. Dr. Josef Granwehr
Institute of Energy- und Climate Research, Fundamental Electrochemistry (IEK-9)
Tel.: +49-2461 61-96400
E-Mail: j.granwehr@fz-juelich.de

Prof. Dr. Rüdiger-A. Eichel
Director Institute of Energy- und Climate Research, Fundamental Electrochemistry (IEK-9)
Tel.: +49 2461 61-5124
E-Mail: Sekretariat-Eichel@fz-juelich.de

Dr. Johannes Wandt
E-Mail: johannes.wandt@tum.de

Press contact:

Dr. Regine Panknin
Forschungszentrum Jülich, Corporate communications
Tel. 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

Tobias Schlößer
Forschungszentrum Jülich, Corporate communications
Tel. 02461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2017/2017-12-06-lit... - Pressemitteilung

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

More articles from Power and Electrical Engineering:

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

nachricht Did you know what a Christmas village has to do with UV radiation?
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

 
Latest News

NASA's SuperTIGER balloon flies again to study heavy cosmic particles

07.12.2017 | Physics and Astronomy

UChicago scientists craft world's tiniest interlinking chains

07.12.2017 | Life Sciences

Study reveals significant role of dust in mountain ecosystems

07.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>