Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New synthesis method may shape future of nanostructures, clean energy


Findings advance efficient solar spliting of water into hydrogen fuel

A team of University of Maryland physicists has published new nanoscience advances that they and other scientists say make possible new nanostructures and nanotechnologies with huge potential applications ranging from clean energy and quantum computing advances to new sensor development.

Published in the September 2, issue of Nature Communications the Maryland scientists' primary discovery is a fundamentally new synthesis strategy for hybrid nanostructures that uses a connector, or "intermedium," nanoparticle to join multiple different nanoparticles into nanostructures that would be very difficult or perhaps even impossible to make with existing methods.

The resultant mix and match modular component approach avoids the limitations in material choice and nanostructure size, shape and symmetry that are inherent in the crystalline growth (epitaxial) synthesis approaches currently used to build nanostructures.

"Our approach makes it possible to design and build higher order [more complex and materially varied] nanostructures with a specifically designed symmetry or shape, akin to the body's ability to make different protein oligomers each with a specific function determined by its specific composition and shape," says team leader Min Ouyang, an associate professor in the department of physics and the Maryland NanoCenter.

"Such a synthesis method is the dream of many scientists in our field and we expect researchers now will use our approach to fabricate a full class of new nanoscale hybrid structures," he says.

Among the scientists excited about this new method is the University of Delaware's Matt Doty, an associate professor of materials science and engineering, physics, and electrical and computer engineering and associate director of the UD Nanofabrication Facility. "The work of Weng and coauthors provides a powerful new tool for the 'quantum engineering' of complex nanostructures designed to implement novel electronic and optoelectronic functions. [Their] new approach makes it feasible for researchers to realize much more sophisticated nanostructure designs than were previously possible." he says.

Lighting a Way to Efficient Clean Power Generation

The team's second discovery may allow full realization of a light-generated nanoparticle effect first used by ancient Romans to create glass that changes color based on light.. This effect, known as surface plasmon resonance, involves the generation of high energy electrons using light.

More accurately explains Ouyang, plasmon resonance is the generation of a collective oscillation of low energy electrons by light. And the light energy stored in such a "plasmonic oscillator" then can be converted to energetic carriers (i.e., "hot" electrons)" for use in various applications.

In recent years, many scientists have been trying to apply this effect to the creation of more efficient photocatalysts for use in the production of clean energy. Photocatalysts are substances that use light to boost chemical reactions. Chlorophyll is a natural photocatalyst used by plants.

"The ingenious nano-assemblies that Professor Ouyang and his collaborators have fabricated, which include the novel feature of a silver-gold particle that super-efficiently harvests light, bring us a giant step nearer the so-far elusive goal of artificial photosynthesis: using sunlight to transform water and carbon dioxide into fuels and valuable chemicals," says Professor Martin Moskovits of the University of California at Santa Barbara, a widely recognized expert in this area of research and not affiliated with the paper.

Indeed, using sunlight to split water molecules into hydrogen and oxygen to produce hydrogen fuel has long been a clean energy "holy grail". However, decades of research advances have not yielded photocatalytic methods with sufficient energy efficiency to be cost effective for use in large scale water splitting applications.

"Using our new modular synthesis strategy, our UMD team created an optimally designed, plasmon-mediated photocatalytic nanostructure that is an almost 15 times more efficient than conventional photocatalysts," says Ouyang.

In studying this new photocatalyst, the scientists identified a previously unknown "hot plasmon electron-driven photocatalysis mechanism with an identified electron transfer pathway."

It is this new mechanism that makes possible the high efficiency of the UMD team's new photocatalyst. And it is a finding made possible by the precise materials control allowed by the team's new general synthesis method.

Their findings hold great promise for future advances that could make water splitting cost effective for large-scale use in creating hydrogen fuel. Such a system would allow light energy from large solar energy farms to be stored as chemical energy in the form of clean hydrogen fuel. And the UMD team's newly-discovered mechanism for creating hot (high energy) electrons should also be applicable to research involving other photo-excitation processes, according to Ouyang and his colleagues.


Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis, Nature Communications, Lin Weng, HuiZhang, Alexander O. Govorov and Min Ouyang.

Lee Tune | Eurek Alert!

Further reports about: UMD effect electrons materials nanostructure nanostructures photocatalysts physics specific synthesis

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>