Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study uses blizzard to measure wind turbine airflow

25.06.2014

University of Minnesota researchers are first to use natural snow to visualize airflow of large-scale wind turbine

A first-of-its-kind study by researchers at the University of Minnesota (UMN) using snow during a Minnesota blizzard is giving researchers new insight into the airflow around large wind turbines. This research is essential to improving wind energy efficiency, especially in wind farms where airflows from many large wind turbines interact with each other.

The study by researchers at the UMN College of Science and Engineering's St. Anthony Falls Lab was published today in Nature Communications, a major scientific journal.

Wind energy is one of the fastest-growing renewable energy sources. The U.S. Department of Energy estimates energy losses in wind farms to be as high as 10-20 percent and identifies complex airflows created by the turbines as the major culprit for such losses. As wind turbines have grown to more than 100 meters tall, field research in real-world settings has become more difficult.

"In the lab we use tracer particles to measure airflows of wind turbine models in wind tunnels, but our research was extremely constrained by an inability to measure flows at the large scale," said Jiarong Hong, a UMN mechanical engineering assistant professor and lead researcher on the study. "Most researchers thought measurements of this kind at the real-world scale were impossible."

Hong, who grew up in southwest China and received his Ph.D. at Johns Hopkins University, had only seen snow a few times in his life before moving to Minnesota in 2012. He wondered if snow might be the solution to their dilemma.

"We have everything we needed in Minnesota for this research," Hong said. "We have a fully-equipped large research wind turbine at the U.S. Department of Energy-funded Eolos Wind Energy Research Center run by the University. We also have snow to serve as the particulates to measure the airflows and committed researchers and engineers to carry out such an unprecedented effort."

After a number of previous attempts when the snow was poor quality or the instruments malfunctioned in the cold weather, researchers headed to the Eolos 2.5 KW wind turbine in Rosemount, Minn., in the early morning hours of a snowstorm on Feb. 22, 2013.

They braved the harsh conditions in the middle of the night to set up a large searchlight with specially designed reflecting optics to generate a gigantic light sheet next to the 130-meter-tall wind turbine for illuminating the snow particles in a 36-meter-wide-by-36-meter-high area. The snow is easier to see in the light at night, much like the average person looks into a streetlight to see how much it is snowing during a snowstorm. Researchers videotaped the snow particles as the wind turbine spun to show airflow patterns. This video was digitized and synchronized with wake flow and load data from the fully instrumented research wind turbine.

To view the video, visit http://z.umn.edu/windvideo.

Results of the experiment showed that this technique was successful in measuring the turbulence of the airflow structure around the wind turbine. It is a first step in showing significant differences in the patterns of airflows in the field at large scale compared to those measured in the lab.

"These measurements are extremely important in our efforts to improve the efficiency of wind energy that will reduce our reliance on fossil fuels," said Fotis Sotiropoulos, co-author of the study and director of the University's St. Anthony Falls Lab and the Eolos Wind Energy Research Center. "Who would have ever thought we'd use a Minnesota blizzard to help fight global warming."

###

In addition to Hong and Sotiropoulos, other University of Minnesota researchers who were part of this study include civil engineering assistant professor Michele Guala, mechanical engineering Ph.D. student Mostafa Toloui, civil engineering Ph.D. student Kevin Howard, mechanical engineering student Sean Riley, St. Anthony Falls Lab engineer James Tucker, and former post-doctoral researcher Leonardo Chamorro who is now at the University of Illinois at Urbana-Champaign.

To view the full research paper in Nature Communications, visit z.umn.edu/windstudy14.

Rhonda Zurn | Eurek Alert!

Further reports about: Communications Energy Lab airflow differences measurements mechanical scale

More articles from Power and Electrical Engineering:

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

nachricht Did you know that UV light helps to ensure safe bathing during the summer months?
25.07.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>