Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study uses blizzard to measure wind turbine airflow

25.06.2014

University of Minnesota researchers are first to use natural snow to visualize airflow of large-scale wind turbine

A first-of-its-kind study by researchers at the University of Minnesota (UMN) using snow during a Minnesota blizzard is giving researchers new insight into the airflow around large wind turbines. This research is essential to improving wind energy efficiency, especially in wind farms where airflows from many large wind turbines interact with each other.

The study by researchers at the UMN College of Science and Engineering's St. Anthony Falls Lab was published today in Nature Communications, a major scientific journal.

Wind energy is one of the fastest-growing renewable energy sources. The U.S. Department of Energy estimates energy losses in wind farms to be as high as 10-20 percent and identifies complex airflows created by the turbines as the major culprit for such losses. As wind turbines have grown to more than 100 meters tall, field research in real-world settings has become more difficult.

"In the lab we use tracer particles to measure airflows of wind turbine models in wind tunnels, but our research was extremely constrained by an inability to measure flows at the large scale," said Jiarong Hong, a UMN mechanical engineering assistant professor and lead researcher on the study. "Most researchers thought measurements of this kind at the real-world scale were impossible."

Hong, who grew up in southwest China and received his Ph.D. at Johns Hopkins University, had only seen snow a few times in his life before moving to Minnesota in 2012. He wondered if snow might be the solution to their dilemma.

"We have everything we needed in Minnesota for this research," Hong said. "We have a fully-equipped large research wind turbine at the U.S. Department of Energy-funded Eolos Wind Energy Research Center run by the University. We also have snow to serve as the particulates to measure the airflows and committed researchers and engineers to carry out such an unprecedented effort."

After a number of previous attempts when the snow was poor quality or the instruments malfunctioned in the cold weather, researchers headed to the Eolos 2.5 KW wind turbine in Rosemount, Minn., in the early morning hours of a snowstorm on Feb. 22, 2013.

They braved the harsh conditions in the middle of the night to set up a large searchlight with specially designed reflecting optics to generate a gigantic light sheet next to the 130-meter-tall wind turbine for illuminating the snow particles in a 36-meter-wide-by-36-meter-high area. The snow is easier to see in the light at night, much like the average person looks into a streetlight to see how much it is snowing during a snowstorm. Researchers videotaped the snow particles as the wind turbine spun to show airflow patterns. This video was digitized and synchronized with wake flow and load data from the fully instrumented research wind turbine.

To view the video, visit http://z.umn.edu/windvideo.

Results of the experiment showed that this technique was successful in measuring the turbulence of the airflow structure around the wind turbine. It is a first step in showing significant differences in the patterns of airflows in the field at large scale compared to those measured in the lab.

"These measurements are extremely important in our efforts to improve the efficiency of wind energy that will reduce our reliance on fossil fuels," said Fotis Sotiropoulos, co-author of the study and director of the University's St. Anthony Falls Lab and the Eolos Wind Energy Research Center. "Who would have ever thought we'd use a Minnesota blizzard to help fight global warming."

###

In addition to Hong and Sotiropoulos, other University of Minnesota researchers who were part of this study include civil engineering assistant professor Michele Guala, mechanical engineering Ph.D. student Mostafa Toloui, civil engineering Ph.D. student Kevin Howard, mechanical engineering student Sean Riley, St. Anthony Falls Lab engineer James Tucker, and former post-doctoral researcher Leonardo Chamorro who is now at the University of Illinois at Urbana-Champaign.

To view the full research paper in Nature Communications, visit z.umn.edu/windstudy14.

Rhonda Zurn | Eurek Alert!

Further reports about: Communications Energy Lab airflow differences measurements mechanical scale

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>