Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Siemens D3 Wind Turbine for High Energy Yields at Low Wind Sites

24.09.2014
  • Trade fair premiere for Siemens' new Model SWT-3.3-130 wind turbine
  • New generation of proven direct-drive D3 product platform
  • Generator, rotor hub, nacelle, yaw drive and cooling system reworked

A growing number of onshore wind farms in Germany and throughout Europe are being sited in regions with moderate to low wind speeds. Siemens Energy is responding to this trend with its new Model SWT-3.3-130 wind turbine. Delivering 3.3 megawatts of electric power, this wind power unit extracts the maximum energy yield from low to moderate wind velocities, thereby rounding off Siemens wind power portfolio as an innovative and extremely efficient wind turbine for sites with low wind speeds. With its rotor measuring 130 meters in diameter, this giant unit will be available in early 2017.


The rotor diameter of 130 meters and electrical generating capacity of 3.3 megawatts make Siemens’ new Model SWT-3.3-130 wind turbine the preferred choice for onshore sites with moderate to low wind speeds.

Siemens Wind Power has injected over five years of pertinent experience gained from its D3 platform into the new SWT-3.3-130. This has enabled engineers to fundamentally rework the core components: In the new unit, the direct-drive PMG generator operates with even stronger permanent magnets to further enhance output. The designs of the nacelle bedplate, yaw drive and other components important to unit statics have been strengthened to accommodate the new 130-meter-long rotor.

While new servo-motors ensure precise rotation of the nacelle even at high wind pressures, particularly strong hydraulic cylinders in the newly designed rotor hub enable exact adjustment of rotor blade angle. The SWT-3.3-130 uses B63 blades measuring 63 meters in length. These aeroelastically tailored blades limit the static loading of the nacelle and tower, particularly under turbulent wind conditions, as the blade ends act to cushion and absorb high wind pressure. Further innovations featured in the SWT-3.3-130 include a newly designed cooling system that has now been integrated into the nacelle and ensures optimum cooling of the generator and other electrical components. Thanks to its reworked technology and 130-meter rotor, this new unit exceeds the annual energy yield of the previous D3-series wind turbine (SWT-3.0-113 / SWT-3.2-113) by approximately 17 to 20 percent.

"In our new Model SWT-3.3-130 wind turbine we have once again maximized the performance reserves which Siemens' D3 platform offers with its direct-drive PMG generator," explains Morten Pilgaard Rasmussen, Head of Research & Development at Siemens Wind Power. "We are proud to be able to offer a highly attractive solution for sites with low wind speeds which will set whole new standards for economic efficiency, energy yield and reliability."

Wind power and the associated service activities are part of Siemens' Environmental Portfolio. Around 43 percent of the company's revenues are generated by green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

For further information on WindEnergy 2014 in Hamburg, please see www.siemens.com/press/WindEnergy2014

The Siemens Energy Sector is the world's leading supplier of a complete spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal year 2013 (ended September 30) the Energy Sector had revenues of EUR 26.6 billion, received new orders totaling approximately EUR 28.8 billion, and posted a profit of some EUR 2.0 billion. On September 30, 2013, Siemens' Energy Sector had a workforce of about 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EWP201409073e

Contact

Mr. Bernd Eilitz
Energy Sector

Siemens AG

Lindenplatz 2

20099  Hamburg

Germany

Tel: +49 (40) 2889-8842

Bernd Eilitz | Siemens Energy Sector

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>