Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Siemens D3 Wind Turbine for High Energy Yields at Low Wind Sites

24.09.2014
  • Trade fair premiere for Siemens' new Model SWT-3.3-130 wind turbine
  • New generation of proven direct-drive D3 product platform
  • Generator, rotor hub, nacelle, yaw drive and cooling system reworked

A growing number of onshore wind farms in Germany and throughout Europe are being sited in regions with moderate to low wind speeds. Siemens Energy is responding to this trend with its new Model SWT-3.3-130 wind turbine. Delivering 3.3 megawatts of electric power, this wind power unit extracts the maximum energy yield from low to moderate wind velocities, thereby rounding off Siemens wind power portfolio as an innovative and extremely efficient wind turbine for sites with low wind speeds. With its rotor measuring 130 meters in diameter, this giant unit will be available in early 2017.


The rotor diameter of 130 meters and electrical generating capacity of 3.3 megawatts make Siemens’ new Model SWT-3.3-130 wind turbine the preferred choice for onshore sites with moderate to low wind speeds.

Siemens Wind Power has injected over five years of pertinent experience gained from its D3 platform into the new SWT-3.3-130. This has enabled engineers to fundamentally rework the core components: In the new unit, the direct-drive PMG generator operates with even stronger permanent magnets to further enhance output. The designs of the nacelle bedplate, yaw drive and other components important to unit statics have been strengthened to accommodate the new 130-meter-long rotor.

While new servo-motors ensure precise rotation of the nacelle even at high wind pressures, particularly strong hydraulic cylinders in the newly designed rotor hub enable exact adjustment of rotor blade angle. The SWT-3.3-130 uses B63 blades measuring 63 meters in length. These aeroelastically tailored blades limit the static loading of the nacelle and tower, particularly under turbulent wind conditions, as the blade ends act to cushion and absorb high wind pressure. Further innovations featured in the SWT-3.3-130 include a newly designed cooling system that has now been integrated into the nacelle and ensures optimum cooling of the generator and other electrical components. Thanks to its reworked technology and 130-meter rotor, this new unit exceeds the annual energy yield of the previous D3-series wind turbine (SWT-3.0-113 / SWT-3.2-113) by approximately 17 to 20 percent.

"In our new Model SWT-3.3-130 wind turbine we have once again maximized the performance reserves which Siemens' D3 platform offers with its direct-drive PMG generator," explains Morten Pilgaard Rasmussen, Head of Research & Development at Siemens Wind Power. "We are proud to be able to offer a highly attractive solution for sites with low wind speeds which will set whole new standards for economic efficiency, energy yield and reliability."

Wind power and the associated service activities are part of Siemens' Environmental Portfolio. Around 43 percent of the company's revenues are generated by green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

For further information on WindEnergy 2014 in Hamburg, please see www.siemens.com/press/WindEnergy2014

The Siemens Energy Sector is the world's leading supplier of a complete spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal year 2013 (ended September 30) the Energy Sector had revenues of EUR 26.6 billion, received new orders totaling approximately EUR 28.8 billion, and posted a profit of some EUR 2.0 billion. On September 30, 2013, Siemens' Energy Sector had a workforce of about 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EWP201409073e

Contact

Mr. Bernd Eilitz
Energy Sector

Siemens AG

Lindenplatz 2

20099  Hamburg

Germany

Tel: +49 (40) 2889-8842

Bernd Eilitz | Siemens Energy Sector

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>