Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could help make 'roll-up' digital screens a reality for all

06.03.2014

Researchers from the University of Surrey worked together with scientists from Philips to further develop the 'Source-Gated-Transistor' (SGT) - a simple circuit component invented jointly by the teams.

Previously, they found that the component could be applied to many electronic designs of an analog nature, such as display screens. Through this current study, researchers have now shown that SGTs can also be applied to next-generation digital circuits.

SGTs control the electric current as it enters a semiconductor, which decreases the odds of circuit malfunction, improves energy efficiency and keeps fabrication costs to a minimum. These properties make SGTs ideal for next-generation electronic devices, and could enable digital technologies to be incorporated into those built using flexible plastics or clothing textiles.

Such technologies may include ultra-lightweight and flexible gadgets which can be rolled up to save space when not in use, smart plasters, thinner than a human hair, that can wirelessly monitor the health of the wearer, low-cost electronic shopping tags for instant checkout, and disaster prediction sensors, used on buildings in regions that are at high risk of natural disasters.

"These technologies involve thin plastic sheets of electronic circuits, similar to sheets of paper, but embedded with smart technologies. Until now, such technologies could only be produced reliably in small quantities, and that confined them to the research lab. However, with SGTs we have shown we can achieve characteristics needed to make these technologies viable, without increasing the complexity or cost of the design," said lead researcher Dr Radu Sporea, Advanced Technology Institute (ATI), University of Surrey.

Professor Ravi Silva, Director of the ATI and a co-author of the work, said, "This work is a classic example of academia working closely with industry for over two decades to perfect a concept which has wide-reaching applications across a variety of technologies. Whilst SGTs can be applied to mainstream materials such as silicon, used widely in the production of current consumer devices, it is the potential to apply them to new materials such graphene that makes this research so crucial."

"By making these incredible devices less complex and implicitly very affordable, we could see the next generation of gadgets become mainstream much quicker than we thought," Dr Sporea concluded.

Amy Sutton | EurekAlert!
Further information:
http://www.surrey.ac.uk

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>