Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could help make 'roll-up' digital screens a reality for all

06.03.2014

Researchers from the University of Surrey worked together with scientists from Philips to further develop the 'Source-Gated-Transistor' (SGT) - a simple circuit component invented jointly by the teams.

Previously, they found that the component could be applied to many electronic designs of an analog nature, such as display screens. Through this current study, researchers have now shown that SGTs can also be applied to next-generation digital circuits.

SGTs control the electric current as it enters a semiconductor, which decreases the odds of circuit malfunction, improves energy efficiency and keeps fabrication costs to a minimum. These properties make SGTs ideal for next-generation electronic devices, and could enable digital technologies to be incorporated into those built using flexible plastics or clothing textiles.

Such technologies may include ultra-lightweight and flexible gadgets which can be rolled up to save space when not in use, smart plasters, thinner than a human hair, that can wirelessly monitor the health of the wearer, low-cost electronic shopping tags for instant checkout, and disaster prediction sensors, used on buildings in regions that are at high risk of natural disasters.

"These technologies involve thin plastic sheets of electronic circuits, similar to sheets of paper, but embedded with smart technologies. Until now, such technologies could only be produced reliably in small quantities, and that confined them to the research lab. However, with SGTs we have shown we can achieve characteristics needed to make these technologies viable, without increasing the complexity or cost of the design," said lead researcher Dr Radu Sporea, Advanced Technology Institute (ATI), University of Surrey.

Professor Ravi Silva, Director of the ATI and a co-author of the work, said, "This work is a classic example of academia working closely with industry for over two decades to perfect a concept which has wide-reaching applications across a variety of technologies. Whilst SGTs can be applied to mainstream materials such as silicon, used widely in the production of current consumer devices, it is the potential to apply them to new materials such graphene that makes this research so crucial."

"By making these incredible devices less complex and implicitly very affordable, we could see the next generation of gadgets become mainstream much quicker than we thought," Dr Sporea concluded.

Amy Sutton | EurekAlert!
Further information:
http://www.surrey.ac.uk

More articles from Power and Electrical Engineering:

nachricht Siemens hands over world's largest offshore grid connection to TenneT
27.04.2015 | Siemens AG

nachricht Electromobility: Powerful Ultralight Motor for Electrically Powered Flight
27.04.2015 | Siemens AG

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>