Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Wind Forecasts Save Millions of Dollars for Xcel Energy

14.11.2011
The National Center for Atmospheric Research (NCAR) has developed a highly detailed wind energy forecasting system with Xcel Energy, enabling the utility to capture energy from turbines far more effectively and at lower cost. The system, which Xcel Energy formally took over last month, saves ratepayers several million dollars yearly.

By issuing forecasts that are 35 percent more accurate than previous forecasting methods, the system enables utility operators to constantly anticipate the amount of energy produced by wind farms across Xcel Energy’s service area. As a result, the utility can make critical decisions about saving money by powering down traditional coal and natural gas plants when possible while reliably meeting the needs of its customers.

“The goal of this project is to make it more affordable for Xcel Energy to bring on more wind energy,” says William Mahoney, an NCAR program director overseeing the project. “Xcel Energy has been very proactive in adding wind energy to its system, but one of the major obstacles is the difficulty in predicting when and how strongly winds will blow at the locations of turbines. Every fraction that we can improve the forecasts results in real savings.”

The system, which has become increasingly accurate since NCAR entered into a contract with Xcel Energy to begin developing it in 2009, saved the utility $6 million in 2010. Future savings will vary from year to year, depending on such factors as prices of other energy sources and the amount of wind in a given year.

The wind energy forecasting system relies on a suite of tools, including highly detailed observations of atmospheric conditions and an ensemble of cutting-edge computer models. It issues frequent high-resolution wind energy forecasts, updated with new information every 15 minutes, for wind farm sites.

It is used for wind farms in states served by Xcel Energy, including Colorado, Minnesota, New Mexico, Texas, and Wisconsin.

The U.S. Department of Energy’s National Renewable Energy Laboratory supported the project by evaluating several mathematical formulas to calculate the amount of energy that turbines generate when winds blow at various speeds and directions.

“Wind is challenging because of the impacts it can have on our operations due to its intermittency,” says Eric Pierce, Xcel Energy's managing director of energy trading/commercial operations. “This new forecasting system will enable us to harness wind far more effectively while saving millions of dollars for our customers. We are very pleased to use this as a key tool toward building a diverse portfolio.”

Generating electricity in real time

More than two dozen states have mandated that utilities increase their use of renewable energy as a way to reduce dependence on fossil fuels such as coal, oil, and natural gas, which affect air quality and release greenhouse gases associated with climate change. But the shift to wind means relying on a resource that is notoriously difficult to predict and manage.

Energy generated by a wind turbine or any other source must be promptly consumed because large amounts of electricity cannot be stored in a cost-effective manner. If an electric utility powers down a coal or natural gas facility in anticipation of wind-driven energy, those plants may not be able to power up fast enough should the winds fail to blow. The only option in such a scenario is to buy energy on the spot market, which can be very costly.

Conversely, if the winds blow more strongly or erratically than anticipated, the surge of energy can overload the system.

Forecasting wind around turbines is challenging because landscape features such as hills and trees can reshape the wind speed and direction and cause turbulence in ways that may greatly influence the amount of energy that is produced. In addition, most forecasting models are designed to generate information about winds close to ground level rather than at about 200 feet, which is where Xcel Energy’s turbine hubs are typically located.

To generate the forecasts, the NCAR system incorporates observations of current atmospheric conditions from a variety of sources, including satellites, aircraft, weather radars, ground-based weather stations, and sensors on the wind turbines themselves. The information is fed into four powerful NCAR-based tools:

-- a customized version of the Weather Research and Forecasting computer model, which generates finely detailed simulations of future atmospheric conditions
-- Real-Time Four-Dimensional Data Assimilation system, which continuously updates the simulations with the most recent observations
-- Dynamic Integrated Forecast system, which statistically optimizes the output based on recent performance

-- Wind to Energy Conversion system, which combines turbine power generation data with the wind prediction information to generate power forecasts

The project builds on forecast technologies that NCAR has successfully developed for the U.S. military, National Weather Service, aviation industry, U.S. Department of Transportation, overseas governments, and other organizations in the public and private sectors.

“Wind is particularly elusive to predict, because small changes in atmospheric temperature or pressure can completely alter wind speed and direction,” says Sue Ellen Haupt, an NCAR program director who oversees the project with Mahoney. “We’re very pleased that this combination of cutting-edge computer models and real-time observations is helping produce more reliable wind energy for millions of Xcel Energy customers.”

Although Xcel Energy now runs the system, NCAR will continue to make refinements, such as making it easier to add wind farms to the forecasting system. In addition, the system will continue to become more accurate, with the software automatically making adjustments based on any differences between the energy forecasts and actual energy generation.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Additional contacts:

William Mahoney, NCAR Program Director
303-497-8426
mahoney@ucar.edu
Sue Ellen Haupt, NCAR Program Director
303-497-2763
haupt@ucar.edu
Gabriel Romero, Xcel Energy Media Relations
303-294-2300
thomas.g.romero@xcelenergy.com
On the Web:
Renewable Energy Research and Development
http://www.rap.ucar.edu/wsap/themes/renew_energy.php
Resources for journalists:
http://www.ucar.edu/news/journalists
Read this and past releases or sign up for e-mail delivery:
http://www.ucar.edu/news/releases

David Hosansky | Newswise Science News

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>