Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NCAR Forecasts Will Help Xcel Energy Harness Wind

NCAR has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to use more wind energy. The forecasts will help utility operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted.

The National Center for Atmospheric Research (NCAR) has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to better integrate electricity generated from wind into the power grid.

The forecasts will help operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted, allowing the utility to increase reliance on alternative energy while still meeting the needs of its customers.

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will support the project by developing mathematical formulas to calculate the amount of energy that turbines generate when winds blow at various speeds.

NCAR will use a suite of tools, including cutting-edge computer models, to issue high-resolution wind forecasts for wind farm sites every three hours. If the prediction system is successful, wind forecasting companies may adopt the technology to help utilities in the United States and overseas transition away from fossil fuels.

"One of the major obstacles that has prevented more widespread use of wind energy is the difficulty in predicting when and how strongly the wind will blow at the wind farms," says William Mahoney, the NCAR program director overseeing the project. "These forecasts are a critical step in getting more energy from wind."

Generating electricity in real time

A number of states are mandating that utilities increase their use of renewable energy as a way to reduce dependence on fossil fuels such as coal, oil, and natural gas, which affect air quality and release greenhouse gases associated with climate change. But the shift to wind means relying on a resource that is notoriously difficult to predict and manage.

Because large amounts of electricity cannot be stored in a cost-effective manner, power generated by a wind turbine or any other source must be promptly consumed. If an electric utility powers down a coal- or natural gas-fired facility in anticipation of wind-driven energy, those plants may not be able to power up fast enough if the winds fail to blow. The only option in such a scenario is to buy energy on the spot market, which can be very costly. Conversely, if the winds blow more strongly or erratically than anticipated, the surge of energy can overload the system.

"Wind energy remains difficult to manage due to its variability--you can't always count on it," says Eric Pierce, Xcel Energy's managing director of energy trading. "Accurately forecasting our wind power generation will allow Xcel Energy to reliably bring on more wind energy and reduce costs at the same time. This is an important part of building a 21st century energy system."

Under the agreement, NCAR will develop a prototype advanced wind prediction system during the next 18 months and will begin to generate test forecasts for Xcel Energy wind farms in Colorado, Minnesota, New Mexico, Texas, and Wyoming after six months. NCAR will continue to improve the system over the following 12 months. Then the prototpe forecasting system will be transferred to Xcel Energy for operational use, while NCAR continues to work toward making the forecasts still more accurate.

NREL will help Xcel Energy predict the resulting energy output.

"The utility is interested in the potential power coming from these large wind sites, but every wind turbine on the site will not have the same wind speed," says Erik Ela, NREL engineer. "NREL's models will convert the wind speed into power and give the utility better information on how much electricity the entire wind site will generate."

Pinpointing breezes at turbine level

Wind is among the most difficult weather variables to forecast. A number of factors can affect it, such as topography, ground cover, temperature inversions, and even the number of leaves on nearby trees. NCAR's task is especially challenging because researchers will try to pinpoint breezes in the vicinity of wind turbines, which are generally about 200 to 400 feet above the ground and arrayed in tightly clustered wind farms. Winds at these heights are usually far stronger than at 33 feet, the height used by ground-level weather stations.

To generate the forecasts, NCAR will incorporate observations of current atmospheric conditions from a variety of sources, including satellites, aircraft, weather radars, ground-based weather stations, and even sensors on the wind turbines. The information will be fed into three powerful NCAR-based tools:

-- the Weather Research and Forecasting computer model, which generates finely detailed simulations of future atmospheric conditions

-- the Real-Time Four-Dimensional Data Assimilation System, which continuously updates the simulations with the most recent observations

-- the Dynamic Integrated foreCast System, which statistically optimizes the output based on recent performance

The project builds on forecast technologies that NCAR has successfully developed for the U.S. military, National Weather Service, aviation industry, overseas governments, and other organizations in the public and private sectors.

"Wind can be elusive, and even very small changes in the atmosphere can make a difference in wind speed and direction," Mahoney says. "But we believe our experience in developing increasingly sophisticated forecasting systems will enable us to produce the accurate forecasts that Xcel Energy needs to provide reliable wind energy to its customers."

"The NCAR system is based on a computer model of the weather which has been developed and refined over the last decade, specifically for predicting these kinds of fine-scale local impacts of weather," says NCAR scientist Tom Warner. "Combining this modeling technology with studies that help us to better understand atmospheric processes at Xcel Energy wind farms will lead to more accurate forecasts."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>