Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Forecasts Will Help Xcel Energy Harness Wind

06.02.2009
NCAR has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to use more wind energy. The forecasts will help utility operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted.

The National Center for Atmospheric Research (NCAR) has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to better integrate electricity generated from wind into the power grid.

The forecasts will help operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted, allowing the utility to increase reliance on alternative energy while still meeting the needs of its customers.

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will support the project by developing mathematical formulas to calculate the amount of energy that turbines generate when winds blow at various speeds.

NCAR will use a suite of tools, including cutting-edge computer models, to issue high-resolution wind forecasts for wind farm sites every three hours. If the prediction system is successful, wind forecasting companies may adopt the technology to help utilities in the United States and overseas transition away from fossil fuels.

"One of the major obstacles that has prevented more widespread use of wind energy is the difficulty in predicting when and how strongly the wind will blow at the wind farms," says William Mahoney, the NCAR program director overseeing the project. "These forecasts are a critical step in getting more energy from wind."

Generating electricity in real time

A number of states are mandating that utilities increase their use of renewable energy as a way to reduce dependence on fossil fuels such as coal, oil, and natural gas, which affect air quality and release greenhouse gases associated with climate change. But the shift to wind means relying on a resource that is notoriously difficult to predict and manage.

Because large amounts of electricity cannot be stored in a cost-effective manner, power generated by a wind turbine or any other source must be promptly consumed. If an electric utility powers down a coal- or natural gas-fired facility in anticipation of wind-driven energy, those plants may not be able to power up fast enough if the winds fail to blow. The only option in such a scenario is to buy energy on the spot market, which can be very costly. Conversely, if the winds blow more strongly or erratically than anticipated, the surge of energy can overload the system.

"Wind energy remains difficult to manage due to its variability--you can't always count on it," says Eric Pierce, Xcel Energy's managing director of energy trading. "Accurately forecasting our wind power generation will allow Xcel Energy to reliably bring on more wind energy and reduce costs at the same time. This is an important part of building a 21st century energy system."

Under the agreement, NCAR will develop a prototype advanced wind prediction system during the next 18 months and will begin to generate test forecasts for Xcel Energy wind farms in Colorado, Minnesota, New Mexico, Texas, and Wyoming after six months. NCAR will continue to improve the system over the following 12 months. Then the prototpe forecasting system will be transferred to Xcel Energy for operational use, while NCAR continues to work toward making the forecasts still more accurate.

NREL will help Xcel Energy predict the resulting energy output.

"The utility is interested in the potential power coming from these large wind sites, but every wind turbine on the site will not have the same wind speed," says Erik Ela, NREL engineer. "NREL's models will convert the wind speed into power and give the utility better information on how much electricity the entire wind site will generate."

Pinpointing breezes at turbine level

Wind is among the most difficult weather variables to forecast. A number of factors can affect it, such as topography, ground cover, temperature inversions, and even the number of leaves on nearby trees. NCAR's task is especially challenging because researchers will try to pinpoint breezes in the vicinity of wind turbines, which are generally about 200 to 400 feet above the ground and arrayed in tightly clustered wind farms. Winds at these heights are usually far stronger than at 33 feet, the height used by ground-level weather stations.

To generate the forecasts, NCAR will incorporate observations of current atmospheric conditions from a variety of sources, including satellites, aircraft, weather radars, ground-based weather stations, and even sensors on the wind turbines. The information will be fed into three powerful NCAR-based tools:

-- the Weather Research and Forecasting computer model, which generates finely detailed simulations of future atmospheric conditions

-- the Real-Time Four-Dimensional Data Assimilation System, which continuously updates the simulations with the most recent observations

-- the Dynamic Integrated foreCast System, which statistically optimizes the output based on recent performance

The project builds on forecast technologies that NCAR has successfully developed for the U.S. military, National Weather Service, aviation industry, overseas governments, and other organizations in the public and private sectors.

"Wind can be elusive, and even very small changes in the atmosphere can make a difference in wind speed and direction," Mahoney says. "But we believe our experience in developing increasingly sophisticated forecasting systems will enable us to produce the accurate forecasts that Xcel Energy needs to provide reliable wind energy to its customers."

"The NCAR system is based on a computer model of the weather which has been developed and refined over the last decade, specifically for predicting these kinds of fine-scale local impacts of weather," says NCAR scientist Tom Warner. "Combining this modeling technology with studies that help us to better understand atmospheric processes at Xcel Energy wind farms will lead to more accurate forecasts."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>