Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Forecasts Will Help Xcel Energy Harness Wind

06.02.2009
NCAR has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to use more wind energy. The forecasts will help utility operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted.

The National Center for Atmospheric Research (NCAR) has reached an agreement with Xcel Energy to provide highly detailed, localized weather forecasts to enable the utility to better integrate electricity generated from wind into the power grid.

The forecasts will help operators make critical decisions about powering down traditional coal- and natural gas-fired plants when sufficient winds are predicted, allowing the utility to increase reliance on alternative energy while still meeting the needs of its customers.

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will support the project by developing mathematical formulas to calculate the amount of energy that turbines generate when winds blow at various speeds.

NCAR will use a suite of tools, including cutting-edge computer models, to issue high-resolution wind forecasts for wind farm sites every three hours. If the prediction system is successful, wind forecasting companies may adopt the technology to help utilities in the United States and overseas transition away from fossil fuels.

"One of the major obstacles that has prevented more widespread use of wind energy is the difficulty in predicting when and how strongly the wind will blow at the wind farms," says William Mahoney, the NCAR program director overseeing the project. "These forecasts are a critical step in getting more energy from wind."

Generating electricity in real time

A number of states are mandating that utilities increase their use of renewable energy as a way to reduce dependence on fossil fuels such as coal, oil, and natural gas, which affect air quality and release greenhouse gases associated with climate change. But the shift to wind means relying on a resource that is notoriously difficult to predict and manage.

Because large amounts of electricity cannot be stored in a cost-effective manner, power generated by a wind turbine or any other source must be promptly consumed. If an electric utility powers down a coal- or natural gas-fired facility in anticipation of wind-driven energy, those plants may not be able to power up fast enough if the winds fail to blow. The only option in such a scenario is to buy energy on the spot market, which can be very costly. Conversely, if the winds blow more strongly or erratically than anticipated, the surge of energy can overload the system.

"Wind energy remains difficult to manage due to its variability--you can't always count on it," says Eric Pierce, Xcel Energy's managing director of energy trading. "Accurately forecasting our wind power generation will allow Xcel Energy to reliably bring on more wind energy and reduce costs at the same time. This is an important part of building a 21st century energy system."

Under the agreement, NCAR will develop a prototype advanced wind prediction system during the next 18 months and will begin to generate test forecasts for Xcel Energy wind farms in Colorado, Minnesota, New Mexico, Texas, and Wyoming after six months. NCAR will continue to improve the system over the following 12 months. Then the prototpe forecasting system will be transferred to Xcel Energy for operational use, while NCAR continues to work toward making the forecasts still more accurate.

NREL will help Xcel Energy predict the resulting energy output.

"The utility is interested in the potential power coming from these large wind sites, but every wind turbine on the site will not have the same wind speed," says Erik Ela, NREL engineer. "NREL's models will convert the wind speed into power and give the utility better information on how much electricity the entire wind site will generate."

Pinpointing breezes at turbine level

Wind is among the most difficult weather variables to forecast. A number of factors can affect it, such as topography, ground cover, temperature inversions, and even the number of leaves on nearby trees. NCAR's task is especially challenging because researchers will try to pinpoint breezes in the vicinity of wind turbines, which are generally about 200 to 400 feet above the ground and arrayed in tightly clustered wind farms. Winds at these heights are usually far stronger than at 33 feet, the height used by ground-level weather stations.

To generate the forecasts, NCAR will incorporate observations of current atmospheric conditions from a variety of sources, including satellites, aircraft, weather radars, ground-based weather stations, and even sensors on the wind turbines. The information will be fed into three powerful NCAR-based tools:

-- the Weather Research and Forecasting computer model, which generates finely detailed simulations of future atmospheric conditions

-- the Real-Time Four-Dimensional Data Assimilation System, which continuously updates the simulations with the most recent observations

-- the Dynamic Integrated foreCast System, which statistically optimizes the output based on recent performance

The project builds on forecast technologies that NCAR has successfully developed for the U.S. military, National Weather Service, aviation industry, overseas governments, and other organizations in the public and private sectors.

"Wind can be elusive, and even very small changes in the atmosphere can make a difference in wind speed and direction," Mahoney says. "But we believe our experience in developing increasingly sophisticated forecasting systems will enable us to produce the accurate forecasts that Xcel Energy needs to provide reliable wind energy to its customers."

"The NCAR system is based on a computer model of the weather which has been developed and refined over the last decade, specifically for predicting these kinds of fine-scale local impacts of weather," says NCAR scientist Tom Warner. "Combining this modeling technology with studies that help us to better understand atmospheric processes at Xcel Energy wind farms will lead to more accurate forecasts."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>