Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating obstacles to fueling the future

06.11.2014

A long-lived catalyst facilitates the first steps toward a viable small-scale on-board hydrogen generator

A*STAR researchers are helping to advance the development of hydrogen-powered cars by producing innovative materials that could make on-board hydrogen generators a reality(1). Hydrogen is a renewable resource with the potential to power everything from households to cars, but its use is currently limited by a lack of green and practical production methods.


An iron-promoted rhodium-based catalyst is a key step forward for the realization of small-scale on-board reformers to convert biomass into hydrogen fuel for powering vehicles.

© Ryan McVay/Photodisc/Thinkstock

Current approaches to generating hydrogen as a power source are anything but environmentally friendly. Obtaining hydrogen through steam reforming and electrolysis of water — the splitting of water into hydrogen and oxygen by applying an electric current — requires high energy input and fossil fuels. In contrast, the process of ethanol steam reforming (ESR) uses ethanol derived from renewable biomass to produce hydrogen and other products.

One drawback of ESR, however, is that it requires high reaction temperatures to proceed and therefore a catalyst is needed to spur on the reaction. Another downside of ESR is that it often produces carbon monoxide as a byproduct, which is toxic and can also lead to poisoning of hydrogen fuel cells.

Luwei Chen, Armando Borgna and colleagues at the A*STAR Institute of Chemical and Engineering Sciences have developed an iron-promoted rhodium-based catalyst on a calcium-modified aluminum oxide support for ESR. This catalyst enables hydrogen to be generated more efficiently with less environmental damage as the reaction can occur at temperatures as low as 350 degrees Celsius and produce almost no carbon monoxide as a byproduct.

The presence of iron oxide enables carbon monoxide to be converted into carbon dioxide and hydrogen via a reaction known as the water–gas shift reaction. Thus, the iron promotion effect on the rhodium-based catalyst is the key to removing carbon monoxide — something that is exceedingly difficult to achieve on rhodium alone.

Additional benefits of ESR are the commercial advantages stemming from the catalyst being quite stable and having a long active lifetime. This means that the catalyst will permit long cycle lengths, minimize the regeneration frequency and reduce the operational downtime for on-board steam reformers. Chen explains that these factors are “essential for maintaining profitable operations in reforming units. Similarly, a stable catalyst would reduce the operating cost for an on-board reformer.”

Chen notes that the catalyst will enable “better operational flexibility in terms of economics and on-board reformer size (since carbon monoxide purification units can be removed),” which she says will “make a significant impact in the design of efficient and simple on-board reactors.” Hence, this research is promising for advancing the realization of small-scale on-board reformers for hydrogen-powered cars.

Reference
Choong, C. K. S., Chen, L., Du, Y., Wang, Z., Hong, L. & Borgna, A. Rh–Fe/Ca–Al2O3: A unique catalyst for CO-free hydrogen production in low temperature ethanol steam reforming. Topics in Catalysis 57, 627–636 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>