Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating obstacles to fueling the future

06.11.2014

A long-lived catalyst facilitates the first steps toward a viable small-scale on-board hydrogen generator

A*STAR researchers are helping to advance the development of hydrogen-powered cars by producing innovative materials that could make on-board hydrogen generators a reality(1). Hydrogen is a renewable resource with the potential to power everything from households to cars, but its use is currently limited by a lack of green and practical production methods.


An iron-promoted rhodium-based catalyst is a key step forward for the realization of small-scale on-board reformers to convert biomass into hydrogen fuel for powering vehicles.

© Ryan McVay/Photodisc/Thinkstock

Current approaches to generating hydrogen as a power source are anything but environmentally friendly. Obtaining hydrogen through steam reforming and electrolysis of water — the splitting of water into hydrogen and oxygen by applying an electric current — requires high energy input and fossil fuels. In contrast, the process of ethanol steam reforming (ESR) uses ethanol derived from renewable biomass to produce hydrogen and other products.

One drawback of ESR, however, is that it requires high reaction temperatures to proceed and therefore a catalyst is needed to spur on the reaction. Another downside of ESR is that it often produces carbon monoxide as a byproduct, which is toxic and can also lead to poisoning of hydrogen fuel cells.

Luwei Chen, Armando Borgna and colleagues at the A*STAR Institute of Chemical and Engineering Sciences have developed an iron-promoted rhodium-based catalyst on a calcium-modified aluminum oxide support for ESR. This catalyst enables hydrogen to be generated more efficiently with less environmental damage as the reaction can occur at temperatures as low as 350 degrees Celsius and produce almost no carbon monoxide as a byproduct.

The presence of iron oxide enables carbon monoxide to be converted into carbon dioxide and hydrogen via a reaction known as the water–gas shift reaction. Thus, the iron promotion effect on the rhodium-based catalyst is the key to removing carbon monoxide — something that is exceedingly difficult to achieve on rhodium alone.

Additional benefits of ESR are the commercial advantages stemming from the catalyst being quite stable and having a long active lifetime. This means that the catalyst will permit long cycle lengths, minimize the regeneration frequency and reduce the operational downtime for on-board steam reformers. Chen explains that these factors are “essential for maintaining profitable operations in reforming units. Similarly, a stable catalyst would reduce the operating cost for an on-board reformer.”

Chen notes that the catalyst will enable “better operational flexibility in terms of economics and on-board reformer size (since carbon monoxide purification units can be removed),” which she says will “make a significant impact in the design of efficient and simple on-board reactors.” Hence, this research is promising for advancing the realization of small-scale on-board reformers for hydrogen-powered cars.

Reference
Choong, C. K. S., Chen, L., Du, Y., Wang, Z., Hong, L. & Borgna, A. Rh–Fe/Ca–Al2O3: A unique catalyst for CO-free hydrogen production in low temperature ethanol steam reforming. Topics in Catalysis 57, 627–636 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>