Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's billion-year-old battery key to storing energy

19.04.2012
Concordia physicists modify battery-like enzyme to produce carbon-neutral energy
New research at Concordia University is bringing us one step closer to clean energy. It is possible to extend the length of time a battery-like enzyme can store energy from seconds to hours, a study published in the Journal of The American Chemical Society shows.

Concordia Associate Professor László Kálmán — along with his colleagues in the Department of Physics, graduate students Sasmit Deshmukh and Kai Tang — has been working with an enzyme found in bacteria that is crucial for capturing solar energy. Light induces a charge separation in the enzyme, causing one end to become negatively charged and the other positively charged, much like in a battery.

In nature, the energy created is used immediately, but Kálmán says that to store that electrical potential, he and his colleagues had to find a way to keep the enzyme in a charge-separated state for a longer period of time.

“We had to create a situation where the charges don’t want to or are not allowed to go back, and that’s what we did in this study,” says Kálmán.

Kálmán and his colleagues showed that by adding different molecules, they were able to alter the shape of the enzyme and, thus, extend the lifespan of its electrical potential.

In its natural configuration, the enzyme is perfectly embedded in the cell’s outer layer, known as the lipid membrane. The enzyme’s structure allows it to quickly recombine the charges and recover from a charge-separated state.

However, when different lipid molecules make up the membrane, as in Kálmán’s experiments, there is a mismatch between the shape of the membrane and the enzyme embedded within it. Both the enzyme and the membrane end up changing their shapes to find a good fit. The changes make it more difficult for the enzyme to recombine the charges, thereby allowing the electrical potential to last much longer.

“What we’re doing is similar to placing a racecar in on snow-covered streets,” says Kálmán. The surrounding conditions prevent the racecar from performing as it would on a racetrack, just like the different lipids prevent the enzyme from recombining the charges as efficiently as it does under normal circumstances.

Photosynthesis, which has existed for billions of years, is one of the earliest energy-converting systems. “All of our food, our energy sources (gasoline, coal) — everything is a product of some ancient photosynthetic activity,” says Kálmán.

But he adds that the main reason researchers are turning to these ancient natural systems is because they are carbon neutral and use resources that are in abundance: sun, carbon dioxide and water. Researchers are using nature’s battery to inspire more sustainable, man-made energy converting systems.

For a peek into the future of these technologies, Kálmán points to medical applications and biocompatible batteries. Imagine batteries made of enzymes and other biological molecules. These could be used to, for example, monitor a patient from the inside post-surgery. Unlike traditional batteries that contain toxic metals, biocompatible batteries could be left inside the body without causing harm.

“We’re far from that right now but these devices are currently being explored and developed,” says Kálmán. “We have to take things step by step but, hopefully, we’ll get there one day in the not-too-distant future.”

Partners in Research: This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada.

Related Links:
Cited study
Kalman Group Website
Concordia’s Department of Physics
Source:
Cléa Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: clea.desjardins@concordia.ca
Twitter: twitter.com/concordia

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

Further reports about: battery battery-like enzyme energy source store energy toxic metal

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>