Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's billion-year-old battery key to storing energy

19.04.2012
Concordia physicists modify battery-like enzyme to produce carbon-neutral energy
New research at Concordia University is bringing us one step closer to clean energy. It is possible to extend the length of time a battery-like enzyme can store energy from seconds to hours, a study published in the Journal of The American Chemical Society shows.

Concordia Associate Professor László Kálmán — along with his colleagues in the Department of Physics, graduate students Sasmit Deshmukh and Kai Tang — has been working with an enzyme found in bacteria that is crucial for capturing solar energy. Light induces a charge separation in the enzyme, causing one end to become negatively charged and the other positively charged, much like in a battery.

In nature, the energy created is used immediately, but Kálmán says that to store that electrical potential, he and his colleagues had to find a way to keep the enzyme in a charge-separated state for a longer period of time.

“We had to create a situation where the charges don’t want to or are not allowed to go back, and that’s what we did in this study,” says Kálmán.

Kálmán and his colleagues showed that by adding different molecules, they were able to alter the shape of the enzyme and, thus, extend the lifespan of its electrical potential.

In its natural configuration, the enzyme is perfectly embedded in the cell’s outer layer, known as the lipid membrane. The enzyme’s structure allows it to quickly recombine the charges and recover from a charge-separated state.

However, when different lipid molecules make up the membrane, as in Kálmán’s experiments, there is a mismatch between the shape of the membrane and the enzyme embedded within it. Both the enzyme and the membrane end up changing their shapes to find a good fit. The changes make it more difficult for the enzyme to recombine the charges, thereby allowing the electrical potential to last much longer.

“What we’re doing is similar to placing a racecar in on snow-covered streets,” says Kálmán. The surrounding conditions prevent the racecar from performing as it would on a racetrack, just like the different lipids prevent the enzyme from recombining the charges as efficiently as it does under normal circumstances.

Photosynthesis, which has existed for billions of years, is one of the earliest energy-converting systems. “All of our food, our energy sources (gasoline, coal) — everything is a product of some ancient photosynthetic activity,” says Kálmán.

But he adds that the main reason researchers are turning to these ancient natural systems is because they are carbon neutral and use resources that are in abundance: sun, carbon dioxide and water. Researchers are using nature’s battery to inspire more sustainable, man-made energy converting systems.

For a peek into the future of these technologies, Kálmán points to medical applications and biocompatible batteries. Imagine batteries made of enzymes and other biological molecules. These could be used to, for example, monitor a patient from the inside post-surgery. Unlike traditional batteries that contain toxic metals, biocompatible batteries could be left inside the body without causing harm.

“We’re far from that right now but these devices are currently being explored and developed,” says Kálmán. “We have to take things step by step but, hopefully, we’ll get there one day in the not-too-distant future.”

Partners in Research: This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada.

Related Links:
Cited study
Kalman Group Website
Concordia’s Department of Physics
Source:
Cléa Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: clea.desjardins@concordia.ca
Twitter: twitter.com/concordia

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

Further reports about: battery battery-like enzyme energy source store energy toxic metal

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>