Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Paving the way for electronic applications

07.07.2014

The formation of electrically conducting ‘nanoroads’ on atomically thin semiconductor nanosheets enables the integration of electronic components.

Two-dimensional sheets of electronic materials, such as graphene, show promise for practical nanoelectronics applications, including transparent electronic circuits used in electronic displays.


Conducting ‘nanoroads’ on the surface of nanosheets of molybdenum disulfide could underpin integrated electronics on this ultrathin material.

© chuyu/iStock/Thinkstock

Molybdenum disulfide (MoS2) is of particular interest because, unlike metallic graphene, it is semiconducting, like silicon — the semiconductor that underpins today’s computer technology.

Now, Yongqing Cai from the A*STAR Institute of High Performance Computing in Singapore, with colleagues from China and the United States, has calculated that, by adding hydrogen to a MoS2 surface, regions of the surface can be converted into metallic ‘roads’.

These roads can transport electrical charges between different areas of a MoS2 nanosheet, enabling the fabrication of integrated electronic circuits(1).

Computer chips require both semiconductors and metals. Semiconductors (typically silicon) are the basis for electronic components such as transistors, whereas metals (generally copper or gold) are used for wires that transport electrical charges around a chip. One advantage of using two-dimensional sheets such as MoS2 is that semiconductors and metals can be integrated on the same sheet, facilitating the development of nanoscale computer chips.

For this to become a reality, the semiconducting properties of a MoS2 sheet need to be modified to enable some areas of the sheet to become metallic and hence electrically conducting. Cai dubs these regions ‘nanoroads’.

“The design of conductive nanoroads on two-dimensional nanosheets — in a way that doesn’t compromise their structural integrity — is critical for transporting electrical charges and to create reliable, highly conducting channels for nanoelectronics applications,” explains Cai.

MoS2 has to be modified before it can conduct electricity, since it requires additional atoms to be able to transport electrical charges. The researchers simulated the effects of adding hydrogen atoms to the surface of a MoS2 sheet and found that MoS2 will become metallic in areas where hydrogen atoms bond to its surface.

They showed that adding lines or chains of hydrogen atoms to the surface created metallic strips. The researchers’ calculations reveal that these strips, or nanoroads, are reliable electrical conductors, and, importantly, they do not damage the structure of the underlying sheets.

In terms of practical implementation, the technology already exists for depositing hydrogen on semiconductor nanosheets: hydrogen has been deposited on other two-dimensional sheets, including graphene. Before MoS2 sheets can be used to produce components such as transistors, a method for producing electron-deficient regions needs to be developed. Once this practical challenge has been addressed, the way will be open to successfully using MoS2 in integrated electronic applications.

Reference

1. Cai, Y., Bai, Z., Pan, H., Feng, Y. P., Yakobson, B. I. & Zhang, Y.-W. Constructing metallic nanoroads on a MoS2 monolayer via hydrogenation. Nanoscale 6, 1691–1697 (2014).
 

Associated links

http://www.research.a-star.edu.sg/research/6998

Lee Swee Heng | Research SEA News

More articles from Power and Electrical Engineering:

nachricht Nanopores for improved radar sensor technology
07.07.2015 | Technische Universität Wien

nachricht Aluminum Clusters Shut Down Molecular Fuel Factory
06.07.2015 | Pacific Northwest National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Imaging could improve treatment of people with COPD

07.07.2015 | Health and Medicine

UNC researchers find 2 biomarkers linked to severe heart disease

07.07.2015 | Health and Medicine

Could black phosphorus be the next silicon?

07.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>