Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Paving the way for electronic applications

07.07.2014

The formation of electrically conducting ‘nanoroads’ on atomically thin semiconductor nanosheets enables the integration of electronic components.

Two-dimensional sheets of electronic materials, such as graphene, show promise for practical nanoelectronics applications, including transparent electronic circuits used in electronic displays.


Conducting ‘nanoroads’ on the surface of nanosheets of molybdenum disulfide could underpin integrated electronics on this ultrathin material.

© chuyu/iStock/Thinkstock

Molybdenum disulfide (MoS2) is of particular interest because, unlike metallic graphene, it is semiconducting, like silicon — the semiconductor that underpins today’s computer technology.

Now, Yongqing Cai from the A*STAR Institute of High Performance Computing in Singapore, with colleagues from China and the United States, has calculated that, by adding hydrogen to a MoS2 surface, regions of the surface can be converted into metallic ‘roads’.

These roads can transport electrical charges between different areas of a MoS2 nanosheet, enabling the fabrication of integrated electronic circuits(1).

Computer chips require both semiconductors and metals. Semiconductors (typically silicon) are the basis for electronic components such as transistors, whereas metals (generally copper or gold) are used for wires that transport electrical charges around a chip. One advantage of using two-dimensional sheets such as MoS2 is that semiconductors and metals can be integrated on the same sheet, facilitating the development of nanoscale computer chips.

For this to become a reality, the semiconducting properties of a MoS2 sheet need to be modified to enable some areas of the sheet to become metallic and hence electrically conducting. Cai dubs these regions ‘nanoroads’.

“The design of conductive nanoroads on two-dimensional nanosheets — in a way that doesn’t compromise their structural integrity — is critical for transporting electrical charges and to create reliable, highly conducting channels for nanoelectronics applications,” explains Cai.

MoS2 has to be modified before it can conduct electricity, since it requires additional atoms to be able to transport electrical charges. The researchers simulated the effects of adding hydrogen atoms to the surface of a MoS2 sheet and found that MoS2 will become metallic in areas where hydrogen atoms bond to its surface.

They showed that adding lines or chains of hydrogen atoms to the surface created metallic strips. The researchers’ calculations reveal that these strips, or nanoroads, are reliable electrical conductors, and, importantly, they do not damage the structure of the underlying sheets.

In terms of practical implementation, the technology already exists for depositing hydrogen on semiconductor nanosheets: hydrogen has been deposited on other two-dimensional sheets, including graphene. Before MoS2 sheets can be used to produce components such as transistors, a method for producing electron-deficient regions needs to be developed. Once this practical challenge has been addressed, the way will be open to successfully using MoS2 in integrated electronic applications.

Reference

1. Cai, Y., Bai, Z., Pan, H., Feng, Y. P., Yakobson, B. I. & Zhang, Y.-W. Constructing metallic nanoroads on a MoS2 monolayer via hydrogenation. Nanoscale 6, 1691–1697 (2014).
 

Associated links

http://www.research.a-star.edu.sg/research/6998

Lee Swee Heng | Research SEA News

More articles from Power and Electrical Engineering:

nachricht Another Milestone in Hybrid Artificial Photosynthesis
31.08.2015 | Lawrence Berkeley National Laboratory

nachricht New high energy density automotive battery system from Fraunhofer IISB and international partners
25.08.2015 | Fraunhofer-Gesellschaft

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

First global antineutrino emission map highlights Earth's energy budget

01.09.2015 | Earth Sciences

Distant planet's interior chemistry may differ from our own

01.09.2015 | Physics and Astronomy

Magnetic fields provide a new way to communicate wirelessly

01.09.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>