Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Paving the way for electronic applications

07.07.2014

The formation of electrically conducting ‘nanoroads’ on atomically thin semiconductor nanosheets enables the integration of electronic components.

Two-dimensional sheets of electronic materials, such as graphene, show promise for practical nanoelectronics applications, including transparent electronic circuits used in electronic displays.


Conducting ‘nanoroads’ on the surface of nanosheets of molybdenum disulfide could underpin integrated electronics on this ultrathin material.

© chuyu/iStock/Thinkstock

Molybdenum disulfide (MoS2) is of particular interest because, unlike metallic graphene, it is semiconducting, like silicon — the semiconductor that underpins today’s computer technology.

Now, Yongqing Cai from the A*STAR Institute of High Performance Computing in Singapore, with colleagues from China and the United States, has calculated that, by adding hydrogen to a MoS2 surface, regions of the surface can be converted into metallic ‘roads’.

These roads can transport electrical charges between different areas of a MoS2 nanosheet, enabling the fabrication of integrated electronic circuits(1).

Computer chips require both semiconductors and metals. Semiconductors (typically silicon) are the basis for electronic components such as transistors, whereas metals (generally copper or gold) are used for wires that transport electrical charges around a chip. One advantage of using two-dimensional sheets such as MoS2 is that semiconductors and metals can be integrated on the same sheet, facilitating the development of nanoscale computer chips.

For this to become a reality, the semiconducting properties of a MoS2 sheet need to be modified to enable some areas of the sheet to become metallic and hence electrically conducting. Cai dubs these regions ‘nanoroads’.

“The design of conductive nanoroads on two-dimensional nanosheets — in a way that doesn’t compromise their structural integrity — is critical for transporting electrical charges and to create reliable, highly conducting channels for nanoelectronics applications,” explains Cai.

MoS2 has to be modified before it can conduct electricity, since it requires additional atoms to be able to transport electrical charges. The researchers simulated the effects of adding hydrogen atoms to the surface of a MoS2 sheet and found that MoS2 will become metallic in areas where hydrogen atoms bond to its surface.

They showed that adding lines or chains of hydrogen atoms to the surface created metallic strips. The researchers’ calculations reveal that these strips, or nanoroads, are reliable electrical conductors, and, importantly, they do not damage the structure of the underlying sheets.

In terms of practical implementation, the technology already exists for depositing hydrogen on semiconductor nanosheets: hydrogen has been deposited on other two-dimensional sheets, including graphene. Before MoS2 sheets can be used to produce components such as transistors, a method for producing electron-deficient regions needs to be developed. Once this practical challenge has been addressed, the way will be open to successfully using MoS2 in integrated electronic applications.

Reference

1. Cai, Y., Bai, Z., Pan, H., Feng, Y. P., Yakobson, B. I. & Zhang, Y.-W. Constructing metallic nanoroads on a MoS2 monolayer via hydrogenation. Nanoscale 6, 1691–1697 (2014).
 

Associated links

http://www.research.a-star.edu.sg/research/6998

Lee Swee Heng | Research SEA News

More articles from Power and Electrical Engineering:

nachricht Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants
25.05.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>