Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Sandwich Technique Slims Down Solar Cells, Improves Efficiency

26.06.2012
Researchers from North Carolina State University have found a way to create much slimmer thin-film solar cells without sacrificing the cells’ ability to absorb solar energy. Making the cells thinner should significantly decrease manufacturing costs for the technology.

“We were able to create solar cells using a ‘nanoscale sandwich’ design with an ultra-thin ‘active’ layer,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the research. “For example, we created a solar cell with an active layer of amorphous silicon that is only 70 nanometers (nm) thick.

This is a significant improvement, because typical thin-film solar cells currently on the market that also use amorphous silicon have active layers between 300 and 500 nm thick.” The “active” layer in thin-film solar cells is the layer of material that actually absorbs solar energy for conversion into electricity or chemical fuel.

“The technique we’ve developed is very important because it can be generally applied to many other solar cell materials, such as cadmium telluride, copper indium gallium selenide, and organic materials,” Cao adds.

The new technique relies largely on conventional manufacturing processes, but results in a very different finished product. The first step is to create a pattern on the substrate using standard lithography techniques. The pattern outlines structures made of transparent, dielectric material measuring between 200 and 300 nm. The researchers then coat the substrate and the nanostructures with an extremely thin layer of active material, such as amorphous silicon. This active layer is then coated with another layer of dielectric material.

Using dielectric nanostructures beneath the active layer creates a thin film with elevated surfaces evenly spaced all along the film – like crenellations at the top of a medieval castle.

“One key aspect of this technique is the design of the ‘nanoscale sandwich,’ with the active materials in the middle of two dielectric layers. The nanostructures act as very efficient optical antennas,” Cao says, “focusing the solar energy into the active material. This focusing means we can use a thinner active layer without sacrificing performance. In the conventional thin-film design, using a thinner active layer would impair the solar cell’s efficiency.”

The paper, “Dielectric Core-shell Optical Antennas for Strong Solar Absorption Enhancement,” is published online in Nano Letters. Lead author of the paper is Yiling Yu, a Ph.D. student at NC State. Co-authors include Drs. Vivian Ferry and Paul Alivisatos of the University of California, Berkeley. The research was supported, in part, by the U.S. Department of Energy.

-shipman-

Note to Editors: The study abstract follows.

“Dielectric Core-shell Optical Antennas for Strong Solar Absorption Enhancement”

Authors: Yiling Yu and Linyou Cao, North Carolina State University; Vivian E. Ferry and A. Paul Alivisatos, U.C. Berkeley

Published: Online, Nano Letters

Abstract: We demonstrate a new light trapping technique of dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost one order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick a-Si:H thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical ARC-coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and non- absorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed from leaky mode resonances (LMRs) in the semiconductor part and anti-reflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication, and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar to fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors and solid-state lighting.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>