Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Sandwich Technique Slims Down Solar Cells, Improves Efficiency

26.06.2012
Researchers from North Carolina State University have found a way to create much slimmer thin-film solar cells without sacrificing the cells’ ability to absorb solar energy. Making the cells thinner should significantly decrease manufacturing costs for the technology.

“We were able to create solar cells using a ‘nanoscale sandwich’ design with an ultra-thin ‘active’ layer,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the research. “For example, we created a solar cell with an active layer of amorphous silicon that is only 70 nanometers (nm) thick.

This is a significant improvement, because typical thin-film solar cells currently on the market that also use amorphous silicon have active layers between 300 and 500 nm thick.” The “active” layer in thin-film solar cells is the layer of material that actually absorbs solar energy for conversion into electricity or chemical fuel.

“The technique we’ve developed is very important because it can be generally applied to many other solar cell materials, such as cadmium telluride, copper indium gallium selenide, and organic materials,” Cao adds.

The new technique relies largely on conventional manufacturing processes, but results in a very different finished product. The first step is to create a pattern on the substrate using standard lithography techniques. The pattern outlines structures made of transparent, dielectric material measuring between 200 and 300 nm. The researchers then coat the substrate and the nanostructures with an extremely thin layer of active material, such as amorphous silicon. This active layer is then coated with another layer of dielectric material.

Using dielectric nanostructures beneath the active layer creates a thin film with elevated surfaces evenly spaced all along the film – like crenellations at the top of a medieval castle.

“One key aspect of this technique is the design of the ‘nanoscale sandwich,’ with the active materials in the middle of two dielectric layers. The nanostructures act as very efficient optical antennas,” Cao says, “focusing the solar energy into the active material. This focusing means we can use a thinner active layer without sacrificing performance. In the conventional thin-film design, using a thinner active layer would impair the solar cell’s efficiency.”

The paper, “Dielectric Core-shell Optical Antennas for Strong Solar Absorption Enhancement,” is published online in Nano Letters. Lead author of the paper is Yiling Yu, a Ph.D. student at NC State. Co-authors include Drs. Vivian Ferry and Paul Alivisatos of the University of California, Berkeley. The research was supported, in part, by the U.S. Department of Energy.

-shipman-

Note to Editors: The study abstract follows.

“Dielectric Core-shell Optical Antennas for Strong Solar Absorption Enhancement”

Authors: Yiling Yu and Linyou Cao, North Carolina State University; Vivian E. Ferry and A. Paul Alivisatos, U.C. Berkeley

Published: Online, Nano Letters

Abstract: We demonstrate a new light trapping technique of dielectric core-shell optical antennas to strongly enhance solar absorption. This approach can allow the thickness of active materials in solar cells lowered by almost one order of magnitude without scarifying solar absorption capability. For example, it can enable a 70 nm thick a-Si:H thin film to absorb 90% of incident solar radiation above the bandgap, which would otherwise require a thickness of 400 nm in typical ARC-coated thin films. This strong enhancement arises from a controlled optical antenna effect in patterned core-shell nanostructures that consist of absorbing semiconductors and non- absorbing dielectric materials. This core-shell optical antenna benefits from a multiplication of enhancements contributed from leaky mode resonances (LMRs) in the semiconductor part and anti-reflection effects in the dielectric part. We investigate the fundamental mechanism for this enhancement multiplication, and demonstrate that the size ratio of the semiconductor and the dielectric parts in the core-shell structure is key for optimizing the enhancement. By enabling strong solar absorption enhancement, this approach holds promise for cost reduction and efficiency improvement of solar conversion devices, including solar cells and solar to fuel systems. It can generally apply to a wide range of inorganic and organic active materials. This dielectric core-shell antenna can also find applications in other photonic devices such as photodetectors, sensors and solid-state lighting.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>