Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano bundles pack a powerful punch

Solid-state energy storage takes a leap forward at Rice University

Rice University researchers have created a solid-state, nanotube-based supercapacitor that promises to combine the best qualities of high-energy batteries and fast-charging capacitors in a device suitable for extreme environments.

A paper from the Rice lab of chemist Robert Hauge, to be published in the journal Carbon, reported the creation of robust, versatile energy storage that can be deeply integrated into the manufacture of devices. Potential uses span on-chip nanocircuitry to entire power plants.

Standard capacitors that regulate flow or supply quick bursts of power can be discharged and recharged hundreds of thousands of times. Electric double-layer capacitors (EDLCs), generally known as supercapacitors, are hybrids that hold hundreds of times more energy than a standard capacitor, like a battery, while retaining their fast charge/discharge capabilities.

But traditional EDLCs rely on liquid or gel-like electrolytes that can break down in very hot or cold conditions. In Rice's supercapacitor, a solid, nanoscale coat of oxide dielectric material replaces electrolytes entirely.

The researchers also took advantage of scale. The key to high capacitance is giving electrons more surface area to inhabit, and nothing on Earth has more potential for packing a lot of surface area into a small space than carbon nanotubes.

When grown, nanotubes self-assemble into dense, aligned structures that resemble microscopic shag carpets. Even after they're turned into self-contained supercapacitors, each bundle of nanotubes is 500 times longer than it is wide. A tiny chip may contain hundreds of thousands of bundles.

For the new device, the Rice team grew an array of 15-20 nanometer bundles of single-walled carbon nanotubes up to 50 microns long. Hauge, a distinguished faculty fellow in chemistry, led the effort with former Rice graduate students Cary Pint, first author of the paper and now a researcher at Intel, and Nolan Nicholas, now a researcher at Matric.

The array was then transferred to a copper electrode with thin layers of gold and titanium to aid adhesion and electrical stability. The nanotube bundles (the primary electrodes) were doped with sulfuric acid to enhance their conductive properties; then they were covered with thin coats of aluminum oxide (the dielectric layer) and aluminum-doped zinc oxide (the counterelectrode) through a process called atomic layer deposition (ALD). A top electrode of silver paint completed the circuit.

"Essentially, you get this metal/insulator/metal structure," said Pint. "No one's ever done this with such a high-aspect-ratio material and utilizing a process like ALD."

Hauge said the new supercapacitor is stable and scaleable. "All solid-state solutions to energy storage will be intimately integrated into many future devices, including flexible displays, bio-implants, many types of sensors and all electronic applications that benefit from fast charge and discharge rates," he said.

Pint said the supercapacitor holds a charge under high-frequency cycling and can be naturally integrated into materials. He envisioned an electric car body that is a battery, or a microrobot with an onboard, nontoxic power supply that can be injected for therapeutic purposes into a patient's bloodstream.

Pint said it would be ideal for use under the kind of extreme conditions experienced by desert-based solar cells or in satellites, where weight is also a critical factor. "The challenge for the future of energy systems is to integrate things more efficiently. This solid-state architecture is at the cutting edge," he said.

Co-authors of the paper include graduate student Zhengzong Sun; James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, and Howard Schmidt, adjunct assistant professor of chemical and biomolecular engineering, all of Rice; Sheng Xu, a former graduate student at Harvard; and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry at Harvard University, who developed ALD.

Read the abstract at

Download high-resolution images at
(SEM images)
Bundles of carbon nanotubes coated with alumina and aluminum-doped zinc oxide are the heart of a solid-state supercapacitor developed by Rice University scientists for energy storage. (Credit: Hauge Lab/Rice University)


Carbon nanotube bundles are at the center of supercapacitors developed at Rice University. Arrays of nanotube bundles are coated via atomic layer deposition to create thousands of microscopic devices in a single array. The electron microscope images at right show the three-layer construction of one of the supercapacitors, which are about 100 nanometers wide. (Credit: Hauge Lab/Rice University)

(Transfer scheme)

A method developed at Rice University allows bundles of vertically aligned single-wall carbon nanotubes to be transferred intact to a conductive substrate. Metallic layers added via atomic layer deposition create a solid-state supercapacitor that can stand up in extreme environments. (Credit: Hauge Lab/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to

David Ruth | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>