Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Muscle-Like Action Allows Camera to Mimic Eye Movement

Using piezoelectric materials, researchers have replicated the muscle motion of the human eye to control camera systems in a way designed to improve the operation of robots. This new muscle-like action could help make robotic tools safer and more effective for MRI-guided surgery and robotic rehabilitation.

Key to the new control system is a piezoelectric cellular actuator that uses a novel biologically inspired technology that will allow a robot eye to move more like a real eye. This will be useful for research studies on human eye movement as well as making video feeds from robots more intuitive. The research is being conducted by Ph.D. candidate Joshua Schultz under the direction of assistant professor Jun Ueda, both from the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology.

“For a robot to be truly bio-inspired, it should possess actuation, or motion generators, with properties in common with the musculature of biological organisms,” said Schultz. “The actuators developed in our lab embody many properties in common with biological muscle, especially a cellular structure. Essentially, in the human eye muscles are controlled by neural impulses. Eventually, the actuators we are developing will be used to capture the kinematics and performance of the human eye.”

Details of the research were presented June 25, 2012, at the IEEE International Conference on Biomedical Robotics and Biomechatronics in Rome, Italy. The research is funded by National Science Foundation. Schultz also receives partial support from the Achievement Rewards for College Scientists (ARCS) Foundation.

Ueda, who leads the Georgia Tech Bio-Robotics and Human Modeling Laboratory in the School of Mechanical Engineering, said this novel technology will lay the groundwork for investigating research questions in systems that possess a large number of active units operating together. The application ranges from industrial robots, medical and rehabilitation robots to intelligent assistive robots.

“Robustness against uncertainty of model and environment is crucial for robots physically interacting with humans and environments,” said Ueda. “Successful integration relies on the coordinated design of control, structure, actuators and sensors by considering the dynamic interaction among them.”

Piezoelectric materials expand or contract when electricity is applied to them, providing a way to transform input signals into motion. This principle is the basis for piezoelectric actuators that have been used in numerous applications, but use in robotics applications has been limited due to piezoelectric ceramic's minuscule displacement.

The cellular actuator concept developed by the research team was inspired by biological muscle structure that connects many small actuator units in series or in parallel.

The Georgia Tech team has developed a lightweight, high speed approach that includes a single-degree of freedom camera positioner that can be used to illustrate and understand the performance and control of biologically inspired actuator technology. This new technology uses less energy than traditional camera positioning mechanisms and is compliant for more flexibility.

“Each muscle-like actuator has a piezoelectric material and a nested hierarchical set of strain amplifying mechanisms,” said Ueda. “We are presenting a mathematical concept that can be used to predict the performance as well as select the required geometry of nested structures. We use the design of the camera positioning mechanism’s actuators to demonstrate the concepts.”

The scientists’ research shows mechanisms that can scale up the displacement of piezoelectric stacks to the range of the ocular positioning system. In the past, the piezoelectric stacks available for this purpose have been too small.

“Our research shows a two-port network model that describes compliant strain amplification mechanisms that increase the stroke length of the stacks,” said Schultz. “Our findings make a contribution to the use of piezoelectric stack devices in robotics, modeling, design and simulation of compliant mechanisms. It also advances the control of systems using a large number of motor units for a given degree of freedom and control of robotic actuators.”

In the study, the scientists sought to resolve a previous conundrum. A cable-driven eye could produce the eye’s kinematics, but rigid servomotors would not allow researchers to test the hypothesis for the neurological basis for eye motion.

Some measure of flexibility could be used in software with traditional actuators, but it depended largely on having a continuously variable control signal and it could not show how flexibility could be maintained with quantized actuation corresponding to neural recruitment phenomena.

“Each muscle-like actuator consists of a piezoelectric material and a nested hierarchical set of strain amplifying mechanisms,” said Ueda. “Unlike traditional actuators, piezoelectric cellular actuators are governed by the working principles of muscles - namely, motion results by discretely activating, or recruiting, sets of active fibers, called motor units.

“Motor units are linked by flexible tissue, which serves a two-fold function,” said Ueda. “It combines the action potential of each motor unit, and presents a compliant interface with the world, which is critical in unstructured environments.”

The Georgia Tech team has presented a camera positioner driven by a novel cellular actuator technology, using a contractile ceramic to generate motion. The team used 16 amplified piezoelectric stacks per side.

The use of multiple stacks addressed the need for more layers of amplification. The units were placed inside a rhomboidal mechanism. The work offers an analysis of the force-displacement tradeoffs involved in the actuator design and shows how to find geometry that meets the requirement of the camera positioner, said Schultz.

“The goal of scaling up piezoelectric ceramic stacks holds great potential to more accurately replicate human eye motion than previous actuators,” noted Schultz. “Future work in this area will involve implantation of this technology on a multi-degree of freedom device, applying open and closed loop control algorithms for positioning and analysis of co-contraction phenomena.”

Future research by his team will continue to focus on the development of a design framework for highly integrated robotic systems. This ranges from industrial robots to medical and rehabilitation robots to intelligent assistive robots.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 309
Atlanta, Georgia 30308 USA
Media Relations Contact: John Toon (404-894-6986)(
Writer: Sarah E. Goodwin

John Toon | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>