Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move Over, Silicon, There’s a New Circuit in Town

18.06.2014

When it comes to electronics, silicon will now have to share the spotlight.

In a paper recently published in Nature Communications, researchers from the USC Viterbi School of Engineering describe how they have overcome a major issue in carbon nanotube technology by developing a flexible, energy-efficient hybrid circuit combining carbon nanotube thin film transistors with other thin film transistors.


Hybrid CNT/IGZO circuits fabricated on a polyimide film laminated on a polydimethylsiloxane (PDMS) substrate (USC Viterbi / Chongwu Zhou)

This hybrid could take the place of silicon as the traditional transistor material used in electronic chips, since carbon nanotubes are more transparent, flexible, and can be processed at a lower cost.

Electrical engineering professor Dr. Chongwu Zhou and USC Viterbi graduate students Haitian Chen, Yu Cao, and Jialu Zhang developed this energy-efficient circuit by integrating carbon nanotube (CNT) thin film transistors (TFT) with thin film transistors comprised of indium, gallium and zinc oxide (IGZO).

... more about:
»CNT »Nature »USC »substrates »transistors

“I came up with this concept in January 2013,” said Dr. Chongwu Zhou, professor in USC Viterbi’s Ming Hsieh Department of Electrical Engineering. “Before then, we were working hard to try to turn carbon nanotubes into n-type transistors and then one day, the idea came to me. Instead of working so hard to force nanotubes to do something that they are not good for, why don’t we just find another material which would be ideal for n-type transistors—in this case, IGZO—so we can achieve complementary circuits?”

Carbon nanotubes are so small that they can only be viewed through a scanning electron microscope. This hybridization of carbon nanotube thin films and IGZO thin films was achieved by combining their types, p-type and n-type, respectively, to create circuits that can operate complimentarily, reducing power loss and increasing efficiency. The inclusion of IGZO thin film transistors was necessary to provide power efficiency to increase battery life. If only carbon nanotubes had been used, then the circuits would not be power-efficient. By combining the two materials, their strengths have been joined and their weaknesses hidden.

Zhou likened the coupling of carbon nanotube TFTs and IGZO TFTs to the Chinese philosophy of yin and yang.

“It’s like a perfect marriage,” said Zhou. “We are very excited about this idea of hybrid integration and we believe there is a lot of potential for it.”

The potential applications for this kind of integrated circuitry are numerous, including Organic Light Emitting Diodes (OLEDs), digital circuits, radio frequency identification (RFID) tags, sensors, wearable electronics, and flash memory devices. Even heads-up displays on vehicle dashboards could soon be a reality.

The new technology also has major medical implications. Currently, memory used in computers and phones is made with silicon substrates, the surface on which memory chips are built. To obtain medical information from a patient such as heart rate or brainwave data, stiff electrode objects are placed on several fixed locations on the patient’s body. With this new hybridized circuit, however, electrodes could be placed all over the patient’s body with just a single large but flexible object.

With this development, Zhou and his team have circumvented the difficulty of creating n-type carbon nanotube TFTs and p-type IGZO TFTs by creating a hybrid integration of p-type carbon nanotube TFTs and n-type IGZO TFTs and demonstrating a large-scale integration of circuits. As a proof of concept, they achieved a scale ring oscillator consisting of over 1,000 transistors. Up to this point, all carbon nanotube-based transistors had a maximum number of 200 transistors.

“We believe this is a technological breakthrough, as no one has done this before,” said Haitian Chen, research assistant and electrical engineering PhD student at USC Viterbi. “This gives us further proof that we can make larger integrations so we can make more complicated circuits for computers and circuits.”

The next step for Zhou and his team will be to build more complicated circuits using a CNT and IGZO hybrid that achieves more complicated functions and computations, as well as to build circuits on flexible substrates.

“The possibilities are endless, as digital circuits can be used in any electronics,” Chen said. “One day we’ll be able to print these circuits as easily as newspapers.”

Zhou and Chen believe that carbon nanotube technology, including this new CNT-IGZO hybrid, will be commercialized in the next 5-10 years.

“I believe that this is just the beginning of creating hybrid integrated solutions,” said Zhou. “We will see a lot of interesting work coming up.”

The study is entitled, “Large scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin film transistors,” published in Nature Communications on June 13, 2014. The research was funded by the University of Southern California.

About the USC Viterbi School of Engineering


Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 5,000 undergraduate and graduate students, taught by 174 tenured and tenure-track faculty, with 60 endowed chairs and professorships. http://viterbi.usc.edu

Contact
Megan Hazle – 213-821-1887 or hazle@usc.edu

Megan Hazle | Eurek Alert!
Further information:
http://viterbi.usc.edu/news/news/2014/june-17-2014.htm

Further reports about: CNT Nature USC substrates transistors

More articles from Power and Electrical Engineering:

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

nachricht Did you know that specialty light sources are used to ensure the quality of baby food?
27.07.2015 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>