Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move Over, Silicon, There’s a New Circuit in Town

18.06.2014

When it comes to electronics, silicon will now have to share the spotlight.

In a paper recently published in Nature Communications, researchers from the USC Viterbi School of Engineering describe how they have overcome a major issue in carbon nanotube technology by developing a flexible, energy-efficient hybrid circuit combining carbon nanotube thin film transistors with other thin film transistors.


Hybrid CNT/IGZO circuits fabricated on a polyimide film laminated on a polydimethylsiloxane (PDMS) substrate (USC Viterbi / Chongwu Zhou)

This hybrid could take the place of silicon as the traditional transistor material used in electronic chips, since carbon nanotubes are more transparent, flexible, and can be processed at a lower cost.

Electrical engineering professor Dr. Chongwu Zhou and USC Viterbi graduate students Haitian Chen, Yu Cao, and Jialu Zhang developed this energy-efficient circuit by integrating carbon nanotube (CNT) thin film transistors (TFT) with thin film transistors comprised of indium, gallium and zinc oxide (IGZO).

... more about:
»CNT »Nature »USC »substrates »transistors

“I came up with this concept in January 2013,” said Dr. Chongwu Zhou, professor in USC Viterbi’s Ming Hsieh Department of Electrical Engineering. “Before then, we were working hard to try to turn carbon nanotubes into n-type transistors and then one day, the idea came to me. Instead of working so hard to force nanotubes to do something that they are not good for, why don’t we just find another material which would be ideal for n-type transistors—in this case, IGZO—so we can achieve complementary circuits?”

Carbon nanotubes are so small that they can only be viewed through a scanning electron microscope. This hybridization of carbon nanotube thin films and IGZO thin films was achieved by combining their types, p-type and n-type, respectively, to create circuits that can operate complimentarily, reducing power loss and increasing efficiency. The inclusion of IGZO thin film transistors was necessary to provide power efficiency to increase battery life. If only carbon nanotubes had been used, then the circuits would not be power-efficient. By combining the two materials, their strengths have been joined and their weaknesses hidden.

Zhou likened the coupling of carbon nanotube TFTs and IGZO TFTs to the Chinese philosophy of yin and yang.

“It’s like a perfect marriage,” said Zhou. “We are very excited about this idea of hybrid integration and we believe there is a lot of potential for it.”

The potential applications for this kind of integrated circuitry are numerous, including Organic Light Emitting Diodes (OLEDs), digital circuits, radio frequency identification (RFID) tags, sensors, wearable electronics, and flash memory devices. Even heads-up displays on vehicle dashboards could soon be a reality.

The new technology also has major medical implications. Currently, memory used in computers and phones is made with silicon substrates, the surface on which memory chips are built. To obtain medical information from a patient such as heart rate or brainwave data, stiff electrode objects are placed on several fixed locations on the patient’s body. With this new hybridized circuit, however, electrodes could be placed all over the patient’s body with just a single large but flexible object.

With this development, Zhou and his team have circumvented the difficulty of creating n-type carbon nanotube TFTs and p-type IGZO TFTs by creating a hybrid integration of p-type carbon nanotube TFTs and n-type IGZO TFTs and demonstrating a large-scale integration of circuits. As a proof of concept, they achieved a scale ring oscillator consisting of over 1,000 transistors. Up to this point, all carbon nanotube-based transistors had a maximum number of 200 transistors.

“We believe this is a technological breakthrough, as no one has done this before,” said Haitian Chen, research assistant and electrical engineering PhD student at USC Viterbi. “This gives us further proof that we can make larger integrations so we can make more complicated circuits for computers and circuits.”

The next step for Zhou and his team will be to build more complicated circuits using a CNT and IGZO hybrid that achieves more complicated functions and computations, as well as to build circuits on flexible substrates.

“The possibilities are endless, as digital circuits can be used in any electronics,” Chen said. “One day we’ll be able to print these circuits as easily as newspapers.”

Zhou and Chen believe that carbon nanotube technology, including this new CNT-IGZO hybrid, will be commercialized in the next 5-10 years.

“I believe that this is just the beginning of creating hybrid integrated solutions,” said Zhou. “We will see a lot of interesting work coming up.”

The study is entitled, “Large scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin film transistors,” published in Nature Communications on June 13, 2014. The research was funded by the University of Southern California.

About the USC Viterbi School of Engineering


Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 5,000 undergraduate and graduate students, taught by 174 tenured and tenure-track faculty, with 60 endowed chairs and professorships. http://viterbi.usc.edu

Contact
Megan Hazle – 213-821-1887 or hazle@usc.edu

Megan Hazle | Eurek Alert!
Further information:
http://viterbi.usc.edu/news/news/2014/june-17-2014.htm

Further reports about: CNT Nature USC substrates transistors

More articles from Power and Electrical Engineering:

nachricht New high energy density automotive battery system from Fraunhofer IISB and international partners
25.08.2015 | Fraunhofer-Gesellschaft

nachricht New research may enhance display & LED lighting technology
10.08.2015 | University of Illinois College of Engineering

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>