Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Monitoring and Diagnostics Tackle Algae Biofuel Pond Crash Problem

10.04.2013
Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for future biofuels.

The research, which focuses on monitoring and diagnosing algal pond health, draws upon Sandia’s longstanding expertise in microfluidics technology, its strong bioscience research program and significant internal investments.

Because of the way algae is grown and produced in most algal ponds, they are prone to attack by fungi, rotifers, viruses or other predators. Consequently, algal pond collapse is a critical issue that companies must solve to produce algal biofuels cost-effectively. The issue was identified as a key component in the Department of Energy’s National Algal Biofuels Technology Roadmap.

A three-pronged technical approach

Sandia is addressing the algal pond crash issue in three complementary ways:

Developing a real-time monitoring tool for algal ponds that can detect indications of a problem days in advance of a crash

Successfully applying pathogen detection and characterization technologies honed through the lab’s Rapid Threat Organism Recognition (RapTOR) work

Employing its innovative SpinDx diagnostic device to dig deeper into problems after they’ve occurred and help to identify specific biological agents responsible for crashes

Sandia’s Tom Reichardt, a researcher who works in the lab’s remote sensing unit, led development of an online algal reflectance monitor through an internally funded project. The instruments are typically set up alongside the algal pond, continuously monitoring, analyzing the algae’s concentration levels, examining its photosynthesis and performing other diagnostics.

“In real-time, it will tell you if things are going well with the growth of your algae or whether it’s beginning to show signs of trouble,” said Reichardt. However, he cautioned, while this real-time monitoring will warn pond operators when the ponds have been attacked, it may not be able to identify the attacker.

Quick identification of organisms in ponds is key to mitigation

To help pinpoint the problems, a Sandia team led by researcher Todd Lane recently developed a process to quickly and accurately identify pond crash agents through ultra-high-throughput sequencing using RapTOR.

RapTOR, originally developed for homeland security purposes, was developed to solve the “unknown unknowns” problem – lethal agents that could be weaponized from ordinary viruses or disguised to look harmless. It was designed to serve as a tool to rapidly characterize a biological organism with no pre-existing knowledge.

Lane’s team also created a method for creating a field-ready assay for those agents, something that works quickly and is relatively inexpensive. They are applying SpinDx, a device developed by other Sandia/California researchers that can (among other features) analyze important protein markers and process up to 64 assays from a single sample, all in a matter of minutes.

Finally, a Sandia team led by researcher Jeri Timlin, in collaboration with the University of Nebraska’s Van Etten lab, enhanced the RapTOR diagnostics by studying interactions of a certain virus with algal cells. Using hyperspectral imaging, they identified spectroscopic signatures of viral infections arising from changes in algal pigmentation. These signatures potentially could be exploited for early detection and subsequent mitigation of viral infections in algal ponds.

Advanced tools, instruments could be part of “arsenal” for pond operators

“It’s important for the growth of an algal industry to develop a method where algal pond operators can learn immediately when there’s a problem with their ponds from a biological agent standpoint,” said Lane. “It’s equally important that they learn – within a very short period of time, like 24 hours – what specific agent is eating away at their algae, and have a technology available that could develop an assay to combat the agent. Our tools come very close to accomplishing all of those things.

“We couldn’t really do an exhaustive characterization of all of the kinds of agents that could be at the root of pond crashes,” Lane explained. “But we confirmed some that had been identified before, and we found some others that weren’t familiar to the research community. The important achievement was to develop the methodology, which hadn’t existed before.”

In practical terms, the process developed by Sandia involves a central facility where pond operators would send samples of agents that have appeared in their ponds, and assays that could be deployed back to the pond site. That’s where SpinDx comes in.

Pond site operators, Lane said, know their environments best and, especially with instruments like those developed by Reichardt, understand the signs that could indicate “sick” ponds. He envisions pond operators using a SpinDx-like device as part of their regular arsenal of equipment so they could run early detection tests whenever they sensed instability in their ponds. They could then provide samples to an off-site facility, which in turn would send back assays to allow the operator to investigate the problem more thoroughly and ward off pond crashes before they occur.

“That’s the beauty of SpinDx,” said Lane. “The disks are inexpensive, require little technical expertise and can be manipulated by non-scientists.”

Sandia technology being tested as part of AzCATI algae testbed project

Now that the core principles of pathogen detection and characterization technologies for pond crash forensics have been successfully proven, the next step will be to conduct more robust demonstrations. Serendipitously, Lane’s and Reichardt’s groups will be continuing their work as part of the Algae Testbed Public-Private Partnership (ATP3) led by Arizona State University (ASU), the first national algae testbed. The Sandia team will apply the technologies, collect more data and seek additional collaborations.

“Our results over these past couple of years have been compelling, but now we need to deploy the technology into real-world ponds,” Lane explains. The original work, he says, has moved from the laboratory environment into the operational realm, with only modest research and development now necessary.

Sandia will make use of an algal test bed facility at ASU known as the Arizona Center for Algae Technology and Innovation (AzCATI). The facility features algal ponds and closed photobioreactor algae cultivation systems of various sizes and serves as a hub for research, testing and commercialization of algae-based products.

For brief interviews of Sandia remote sensing researcher Tom Reichardt, Sandia biochemist Aaron Collins and AcCATI program manager John McGowen, visit Sandia’s YouTube channel at www.youtube.com/SandiaLabs.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Mike Janes, mejanes@sandia.gov, (925) 294-2447

Mike Janes | Newswise
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>