Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Cubes in the Sunlight

25.08.2008
Catalyst for water oxidation adopted from plants: a means for energy-efficient production of hydrogen?

Hydrogen will be one of the most important fuels of the future. It would be ideal to obtain hydrogen by splitting water instead of from petroleum.

However, the electrolysis of water is a very energy intensive process, making it both expensive and unsustainable if the electricity necessary to generate it comes from the burning of fossil fuels. Photolysis, the splitting of water by light, is a highly promising alternative.

A team of Australian and American researchers has now developed a catalyst that effectively catalyzes one of the necessary half reactions, the photooxidation of water. As it reports in the journal Angewandte Chemie, the core of the catalyst is a manganese-containing complex modeled after those found in photosynthetic organisms.

Electrolysis is the reverse of the process that occurs in a battery: that is electrical energy is converted to chemical energy. The electrolysis of water involves two half reactions: at the cathode, protons (positively charged hydrogen ions) are reduced to hydrogen, whereas at the anode the oxidation of water produces oxygen.

The goal of the researchers is to use sunlight to get this energy-intensive process going. To make this work, the light-harvesting power of modern solar cells must be combined with effective photocatalysts for the oxidation of water and reduction of hydrogen ions into hydrogen gas.

The biggest hurdle to overcome in the photocatalytic splitting of water to date has been the lack of a robust catalyst that oxidizes water. In fact, the best known catalyst, which very effectively oxidizes water when irradiated with visible light, is a manganese-containing enzyme in the photosynthetic apparatus of living organisms. Robin Brimblecombe and Leone Spiccia at Monash University (Australia), Gerhard F. Swiegers at the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia), and G. Charles Dismukes at Princeton University (USA) have used this structure as a model for their photocatalyst.

The catalyst in question is a manganese oxo complex with a cubic core made of four manganese and four oxygen atoms capped by ancillary phosphinate molecules. The catalytically active species is formed when energy from light causes the release of one the capping molecules from the cube.

However, the manganese complex is not soluble in water. The researchers have overcome this problem by coating one electrode with a wafer-thin Nafion membrane. Housed within the aqueous channels of this membrane, the catalytic species is stabilized and has good access to the water molecules. Irradiation with visible light under an applied 1.2 volts leads to the effective electro-oxidation of water.

This anodic half-cell could be easily paired with a catalytic hydrogen-producing cathode cell. This would result in a photoelectrochemical cell that produces pure hydrogen and oxygen from water and sunlight.

Author: Leone Spiccia, Monash University, Victoria (Australia), http://www.chem.monash.edu.au/staff/spiccia/research.html

Title: Sustained Water Oxidation Photocatalysis by a Bioinspired Manganese Cluster

Angewandte Chemie International Edition 2008, 47, No. 38, doi: 10.1002/anie.200801132

Leone Spiccia | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.monash.edu.au/staff/spiccia/research.html

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>