Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New models for optimizing mission control of unmanned aerial vehicles

01.04.2010
With funding from the Air Force Office of Scientific Research, engineers at Boston University are working on a theoretical approach to improve automated mission control and decision-making for fleets of unmanned aerial vehicles.

While unmanned systems currently rely on the automation of low-level functions, such as navigation, stabilization and trajectory, operating these systems is still quite labor-intensive for Air Force pilots given the variable flying conditions experienced by UAVs.

The BU team, led by Dr. David Castañón and Dr. Christos Cassandras, has focused their work on optimizing "mission control," which describes mid-level control approaches that go beyond simply improving stability and tracking trajectories.

"We were interested in automating functions such as partitioning of tasks among members of teams of UAVs,...monitoring the success of the individual activities, and re-planning to accommodate contingencies or failures in executing the planned tasks," explained Castañón.

Automating these functions would let UAVs adapt their actions more rapidly in response to unforeseen events and ultimately require less human supervision.

To date, the team has developed mathematical algorithms that can make nearly optimal decisions under realistic model conditions. Their approach thus far has been based on the need to account for a number of uncertainties requiring complex computations nearly impossible to implement in real-time systems.

"Our research approach has been to exploit classes of models for which fast algorithms can be developed and to extend these algorithms to generate decisions in more complex models that capture the relevant features of the UAV problems of interest," said Castañón.

While much of Cassandras and Castañón's research is based on mathematical analysis, they have also developed a robotics test scenario for evaluating their approach. Both graduate and undergraduate students at BU are involved in this testing, which uses teams of small robots equipped with sensors to represent the UAVs. In these tests, the robots have to function in a mid-level control environment while being distracted by unforeseen events such as loss of team members, arrival of new tasks and discovery of new information.

As the BU team learns more about the environments in which UAVs operate, they will continue to hone their results, with the long-term goal of increasing the level of self-sufficiency available to future Air Force UAV fleets.

ABOUT AFOSR:

The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Molly Lachance | EurekAlert!
Further information:
http://www.afosr.af.mil

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>