Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling Biofuel Fitness for the Sea

22.06.2012
With the help of a $2 million grant from the U.S. Office of Naval Research, mechanical engineers at the University of Wisconsin-Madison will develop a tool to characterize the performance of a new class of alternative fuels that could be used in maritime vehicles such as submarines and aircraft carriers.

With fossil fuels a limited resource largely controlled by other nations, the U.S. Navy—the largest user of diesel fuel in the country—understandably is interested in alternative fuels that can be produced in the United States.

However, the Navy has some unique needs for powering its fleet of ships, submarines, aircraft carriers, and other marine vessels: The fuels can’t mix with water, nor can they be readily flammable. This excludes most existing biofuels.

A new type of diesel biofuel, called hydro-treated vegetable oil (HVO), could be the answer for maritime vessels. It’s just a matter of determining which, of many possible blends, performs best in an engine. Every fuel has a unique combination of traits, including how hot it burns, how its different components interact, and how quickly the combustion reaction starts.

And as an alternative to expensive, time-consuming tests of each of these traits for every candidate fuel, Rolf Reitz, Wisconsin Distinguished Professor of mechanical engineering at UW-Madison, will lead a project to create a tool for modeling fuel properties.

In fact, Reitz and his colleagues in the UW-Madison Engine Research Center will use the distribution of components in the fuel themselves to predict a fuel’s performance in an engine. For example, all fuels contain different proportions of various types of chemicals, such as aromatic compounds. While each is slightly different, aromatics as a group behave similarly in combustion experiments, and Reitz’s team will characterize how the proportion of aromatic compounds in a fuel affects its behavior in the Engine Research Center suite of test engines.

With rigorous experimentation on a variety of fuels, Reitz says the team can create a world-class model that predicts a fuel’s behavior based solely on its chemical breakdown, allowing the Navy—and eventually, anyone else—to more easily select the best HVO blend for its needs.

"This tool can help them assess whether that fuel makes sense without having to do laborious extensive testing,” Reitz says. “They’ll still have to do some testing, but this lets them eliminate certain classes right off the bat.”

Christie Taylor, ctaylor@engr.wisc.edu, (608) 263-5988

Christie Taylor | Newswise Science News
Further information:
http://www.wisc.edu

Further reports about: Biofuel Engine Fitness HVO Modeling alternative fuel sea snails

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>