Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers develop solar-to-fuel roadmap for crystalline silicon

05.03.2013
New analysis points the way to optimizing efficiency of an integrated system for harvesting sunlight to make storable fuel.

Bringing the concept of an “artificial leaf” closer to reality, a team of researchers at MIT has published a detailed analysis of all the factors that could limit the efficiency of such a system. The new analysis lays out a roadmap for a research program to improve the efficiency of these systems, and could quickly lead to the production of a practical, inexpensive and commercially viable prototype.

Such a system would use sunlight to produce a storable fuel, such as hydrogen, instead of electricity for immediate use. This fuel could then be used on demand to generate electricity through a fuel cell or other device. This process would liberate solar energy for use when the sun isn’t shining, and open up a host of potential new applications.

The new work is described in a paper this week in the Proceedings of the National Academy of Sciences by associate professor of mechanical engineering Tonio Buonassisi, former MIT professor Daniel Nocera (now at Harvard University), MIT postdoc Mark Winkler (now at IBM) and former MIT graduate student Casandra Cox (now at Harvard). It follows up on 2011 research that produced a “proof of concept” of an artificial leaf — a small device that, when placed in a container of water and exposed to sunlight, would produce bubbles of hydrogen and oxygen.

The device combines two technologies: a standard silicon solar cell, which converts sunlight into electricity, and chemical catalysts applied to each side of the cell. Together, these would create an electrochemical device that uses an electric current to split atoms of hydrogen and oxygen from the water molecules surrounding them.

The goal is to produce an inexpensive, self-contained system that could be built from abundant materials. Nocera has long advocated such devices as a means of bringing electricity to billions of people, mostly in the developing world, who now have little or no access to it.

“What’s significant is that this paper really describes all this technology that is known, and what to expect if we put it all together,” Cox says. “It points out all the challenges, and then you can experimentally address each challenge separately.”

Winkler adds that this is a “pretty robust analysis that looked at what’s the best you could do with market-ready technology.”

The original demonstration leaf, in 2011, had low efficiencies, converting less than 4.7 percent of sunlight into fuel, Buonassisi says. But the team’s new analysis shows that efficiencies of 16 percent or more should now be possible using single-bandgap semiconductors, such as crystalline silicon.

“We were surprised, actually,” Winkler says: Conventional wisdom held that the characteristics of silicon solar cells would severely limit their effectiveness in splitting water, but that turned out not to be the case. “You’ve just got to question the conventional wisdom sometimes,” he says.

The key to obtaining high solar-to-fuel efficiencies is to combine the right solar cells and catalyst — a matchmaking activity best guided by a roadmap. The approach presented by the team allows for each component of the artificial leaf to be tested individually, then combined.

The voltage produced by a standard silicon solar cell, about 0.7 volts, is insufficient to power the water-splitting reaction, which needs more than 1.2 volts. One solution is to pair multiple solar cells in series. While this leads to some losses at the interface between the cells, it is a promising direction for the research, Buonassisi says.

An additional source of inefficiency is the water itself — the pathway that the electrons must traverse to complete the electrical circuit — which has resistance to the electrons, Buonassisi says. So another way to improve efficiency would be to lower that resistance, perhaps by reducing the distance that ions must travel through the liquid.

“The solution resistance is challenging,” Cox says. But, she adds, there are “some tricks” that might help to reduce that resistance, such as reducing the distance between the two sides of the reaction by using interleaved plates.

“In our simulations, we have a framework to determine the limits of efficiency” that are possible with such a system, Buonassisi says. For a system based on conventional silicon solar cells, he says, that limit is about 16 percent; for gallium arsenide cells, a widely touted alternative, the limit rises to 18 percent.

Models to determine the theoretical limits of a given system often lead researchers to pursue the development of new systems that approach those limits, Buonassisi says. “It’s usually from these kinds of models that someone gets the courage to go ahead and make the improvements,” he says.

“Some of the most impactful papers are ones that identify a performance limit,” Buonassisi says. But, he adds, there’s a “dose of humility” in looking back at some earlier projections for the limits of solar-cell efficiency: Some of those predicted “limits” have already been exceeded, he says.

“We don’t always get it right,” Buonassisi says, but such an analysis “lays a roadmap for development and identifies a few ‘levers’ that can be worked on.”

The work was supported by the National Science Foundation, the Air Force Office of Scientific Research, the Singapore National Research Foundation through the Singapore-MIT Alliance for Research and Technology, and the Chesonis Family Foundation.

Written by: David L. Chandler, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/press/2013/artificial-leaf-efficiency.html

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>