Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MICROOLED and CEA-LETI design the most efficient silicon-based OLED microdisplay in the world

18.11.2008
Offering better comfort to users of point-and-shoot digital cameras, and new designs for video glasses with the highest resolution ever, Microoled and the CEA-Leti have targeted these and many other potential applications with the announcement of the most efficient silicon-based OLED microdisplay in the world.

Microoled and CEA-Leti announce the OLED microdisplay with the finest pixel pitch (more than 1.7 million sub-pixels, 2 to 4 times more than the other emissive technologies) and the lowest power consumption reported to date (4 times more efficient).

This very compact 0.38” WVGA microdisplay from Microoled is based on the exclusive OLED technology licensed from Thomson and CEA, and integrates the latest know-how and key technologies developed by the teams of Microoled and CEA-Leti. This display is perfectly suited for camcorder and digital still camera eye-pieces as well as for video or interactive eyeglasses.

An efficient collaboration

“This new achievement in the world of microdisplay opens the door for high picture quality electronic viewfinders for cameras, but also enables the market of high definition video eyeglasses for mobile video applications. We are very satisfied with the close collaboration of CEA-LETI, with which we succeeded to develop this highly integrated display with extremely low power consumption”, said Eric Marcellin-Dibon CEO and cofounder of Microoled.

“Marrying the capabilities of CMOS and the flexibility of OLED offers a unique route to microdisplays with unequalled resolution and brightness. We foresee a tremendous potential of applications for theses devices. The high resolution and the low power consumption makes it perfect for a large set of nomadic products”, said Laurent Malier CEO of CEA-Leti.

Clément Moulet | alfa
Further information:
http://www.microoled.net
http://www.cea.fr
http://www-leti.cea.fr

More articles from Power and Electrical Engineering:

nachricht Heavy metals in water meet their match
28.07.2017 | Swansea University

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
27.07.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>