Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microgrids in the American Power Network

25.01.2016

Smart microgrids provide higher reliability and more efficient operation of distributed generation assets than conventional systems. Siemens is participating in a community energy resiliency grant program in New York State and optimizing electrical generation at a Native American reservation in California.

Siemens is working with customers in the United States to move generation closer to load sources, increasing distributed energy sources on the grid. Many large energy users – military bases, universities, commercial campuses, etc – are looking to invest in on-site generation and infrastructure due to the significant value of increased resiliency and energy security of having their power source nearby that they can control independently from the serving utility.


Siemens' smart Microgrid Management System integrates and optimizes decentralized power generation assets and controllable loads to ensure enablement of energy infrastructure functionality


Facility to upgrade biogas into pure hydrogen with a “pressure swing adsorption system” from Xebec USA, Inc. Courtesy of Blue Lake Rancheria

Microgrid design and software control easily integrates and optimizes existing energy infrastructure, renewable generation, and load sources while providing a scalable infrastructure for future expansion.

Siemens is demonstrating their commitment to distributed energy and Microgrid development through their 17 awards with New York State’s Microgrid grant program. Governor Cuomo has dedicated over $30Million dollars to fund community energy resiliency Microgrid projects throughout the state.

In the first phase of the award, Siemens is investigating the technical and economic feasibility of microgrids in cooperation with partners, consulting firm Booz Allen Hamilton and the software company Power Analytics. These smart electricity networks are being evaluated in order to provide communities with a cleaner, more reliable and more affordable energy supply.

Microgrids are More Flexible and Easier to Regulate

The U.S. has a total of about 10.6 million kilometers of power lines, some of which are nearly 100 years old. That’s more than five times longer than the grid in Germany, which has around 1.8 million kilometers of power lines. Monitoring and ensuring the stability of large power grids is very time-consuming and expensive, and the costs are ultimately borne by the customer. Isolated microgrids are more flexible and easier to regulate because they are not affected by fluctuations in neighboring networks.

The New York State Energy Research and Development Authority (NYSERDA) is administering the New York State Microgrid grant program in three phases: feasibility studies, detailed design, and project implementation. The first phase aims to evaluate the technological feasibility and financial business case of the Microgrid solution.

The study will propose optimal power generation sources and capacities, indentify necessary grid infrastructure upgrades, outline the role of the serving utility and the costs for the Microgrid solution. In addition to increasing energy reliability with near-by power supply, the enablement and optimal management of distributed renewable components (e.g. photovoltaics and biogas facilities) in microgrids boosts the share of renewable energy sources in the grid. The first phase feasibility studies of the program are expected to be completed in the first quarter of 2016.

Smart Microgrids for Every Community

One microgrid will already go into operation in Fall 2016 at a Native American reservation. Siemens is currently developing the microgrid at the Blue Lake Rancheria in California in cooperation with the Schatz Energy Research Center of Humboldt State University, which is also in California, and the utility company Pacific Gas & Electric. This microgrid will soon supply electricity to buildings on the reservation including a hotel, casino and designated Red Cross emergency shelter on an area measuring 0.4 square kilometers.

In order to generate environmentally friendly electricity, the microgrid will incorporate a photovoltaic array with an output of 0.5 megawatts (MW), a biomass facility, diesel generators, and a battery storage system with a work capacity of 950 kilowatt-hours (kWh). The photovoltaic array is the biggest in Humboldt County, California, and is expected to reduce CO2 emissions by around 150 metric tons per year.

Siemens is guiding the system architecture of the electric and thermal energy supply systems for the microgrid at the reservation. In doing so, the company is taking into account the different needs and special requirements of the site, including the geographic location and the size of the various loads. The system architecture will support renewable energy generation and advanced control of the electrical infrastructure components.

At Blue Lake Rancheria, Siemens is providing one of the most critical Microgrid system components – the software control. Siemens has leveraged their expertise in the Utility control center software field to develop a leading Microgrid control solution that addresses the specific needs of Microgrid customers. This software is responsible for managing and controlling the system, and therefore realizing the promised benefits.

Without 24x7 personnel

One advantage of Siemens’ Spectrum Power Microgrid Management software solution is that it enables microgrids to be operated without 24x7 personnel. All infrastructure (generation and grid components) within the Microgrid are monitored and controlled via the software’s SCADA platform — a computer system that quickly consolidates, stores, communicates, and provides all of the data in real time. Put simply, the network control system handles the control tasks and optimizes the energy management of the micro power grid.

Advanced control functionality such as weather and load forecasts predict electricity generation and consumption enabling optimal system balancing with a focus on cost reduction or emissions reduction. Siemens advanced Microgrid software provides a flexible and scalable platform to control distributed energy generation and storage systems in a dynamic and energy-efficient manner. This software allows the system to respond quickly to disturbances and communicate with the local utility, reducing the risk of power outages at the reservation.

Advanced control is very important, because the increase in renewable sources of energy such as wind and solar power in the networks is causing greater grid fluctuations and higher costs to ensure a secure power supply. Another factor is the rise in the number of “prosumers” — i.e. buildings or electric vehicles that consume electricity but can also feed it into the grid, and that have to be integrated into grids as decentralized units. Siemens is developing Microgrids so that energy can be efficiently transmitted and distributed despite increasingly complex structures.
Julia Hesse and Sally Jacquemin


Contact

Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

www.siemens.com

Julia Hesse and Sally Jacquemin | Siemens Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>