Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microgrids in the American Power Network


Smart microgrids provide higher reliability and more efficient operation of distributed generation assets than conventional systems. Siemens is participating in a community energy resiliency grant program in New York State and optimizing electrical generation at a Native American reservation in California.

Siemens is working with customers in the United States to move generation closer to load sources, increasing distributed energy sources on the grid. Many large energy users – military bases, universities, commercial campuses, etc – are looking to invest in on-site generation and infrastructure due to the significant value of increased resiliency and energy security of having their power source nearby that they can control independently from the serving utility.

Siemens' smart Microgrid Management System integrates and optimizes decentralized power generation assets and controllable loads to ensure enablement of energy infrastructure functionality

Facility to upgrade biogas into pure hydrogen with a “pressure swing adsorption system” from Xebec USA, Inc. Courtesy of Blue Lake Rancheria

Microgrid design and software control easily integrates and optimizes existing energy infrastructure, renewable generation, and load sources while providing a scalable infrastructure for future expansion.

Siemens is demonstrating their commitment to distributed energy and Microgrid development through their 17 awards with New York State’s Microgrid grant program. Governor Cuomo has dedicated over $30Million dollars to fund community energy resiliency Microgrid projects throughout the state.

In the first phase of the award, Siemens is investigating the technical and economic feasibility of microgrids in cooperation with partners, consulting firm Booz Allen Hamilton and the software company Power Analytics. These smart electricity networks are being evaluated in order to provide communities with a cleaner, more reliable and more affordable energy supply.

Microgrids are More Flexible and Easier to Regulate

The U.S. has a total of about 10.6 million kilometers of power lines, some of which are nearly 100 years old. That’s more than five times longer than the grid in Germany, which has around 1.8 million kilometers of power lines. Monitoring and ensuring the stability of large power grids is very time-consuming and expensive, and the costs are ultimately borne by the customer. Isolated microgrids are more flexible and easier to regulate because they are not affected by fluctuations in neighboring networks.

The New York State Energy Research and Development Authority (NYSERDA) is administering the New York State Microgrid grant program in three phases: feasibility studies, detailed design, and project implementation. The first phase aims to evaluate the technological feasibility and financial business case of the Microgrid solution.

The study will propose optimal power generation sources and capacities, indentify necessary grid infrastructure upgrades, outline the role of the serving utility and the costs for the Microgrid solution. In addition to increasing energy reliability with near-by power supply, the enablement and optimal management of distributed renewable components (e.g. photovoltaics and biogas facilities) in microgrids boosts the share of renewable energy sources in the grid. The first phase feasibility studies of the program are expected to be completed in the first quarter of 2016.

Smart Microgrids for Every Community

One microgrid will already go into operation in Fall 2016 at a Native American reservation. Siemens is currently developing the microgrid at the Blue Lake Rancheria in California in cooperation with the Schatz Energy Research Center of Humboldt State University, which is also in California, and the utility company Pacific Gas & Electric. This microgrid will soon supply electricity to buildings on the reservation including a hotel, casino and designated Red Cross emergency shelter on an area measuring 0.4 square kilometers.

In order to generate environmentally friendly electricity, the microgrid will incorporate a photovoltaic array with an output of 0.5 megawatts (MW), a biomass facility, diesel generators, and a battery storage system with a work capacity of 950 kilowatt-hours (kWh). The photovoltaic array is the biggest in Humboldt County, California, and is expected to reduce CO2 emissions by around 150 metric tons per year.

Siemens is guiding the system architecture of the electric and thermal energy supply systems for the microgrid at the reservation. In doing so, the company is taking into account the different needs and special requirements of the site, including the geographic location and the size of the various loads. The system architecture will support renewable energy generation and advanced control of the electrical infrastructure components.

At Blue Lake Rancheria, Siemens is providing one of the most critical Microgrid system components – the software control. Siemens has leveraged their expertise in the Utility control center software field to develop a leading Microgrid control solution that addresses the specific needs of Microgrid customers. This software is responsible for managing and controlling the system, and therefore realizing the promised benefits.

Without 24x7 personnel

One advantage of Siemens’ Spectrum Power Microgrid Management software solution is that it enables microgrids to be operated without 24x7 personnel. All infrastructure (generation and grid components) within the Microgrid are monitored and controlled via the software’s SCADA platform — a computer system that quickly consolidates, stores, communicates, and provides all of the data in real time. Put simply, the network control system handles the control tasks and optimizes the energy management of the micro power grid.

Advanced control functionality such as weather and load forecasts predict electricity generation and consumption enabling optimal system balancing with a focus on cost reduction or emissions reduction. Siemens advanced Microgrid software provides a flexible and scalable platform to control distributed energy generation and storage systems in a dynamic and energy-efficient manner. This software allows the system to respond quickly to disturbances and communicate with the local utility, reducing the risk of power outages at the reservation.

Advanced control is very important, because the increase in renewable sources of energy such as wind and solar power in the networks is causing greater grid fluctuations and higher costs to ensure a secure power supply. Another factor is the rise in the number of “prosumers” — i.e. buildings or electric vehicles that consume electricity but can also feed it into the grid, and that have to be integrated into grids as decentralized units. Siemens is developing Microgrids so that energy can be efficiently transmitted and distributed despite increasingly complex structures.
Julia Hesse and Sally Jacquemin


Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG

Mr. Florian Martini

Press contact

Siemens AG

Julia Hesse and Sally Jacquemin | Siemens Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>