Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Use of microfluidic chips a first in bitumen-gas analysis

29.02.2012
Process could save time and money for oil/gas industry

A University of Toronto research team has developed a process to analyze the behavior of bitumen in reservoirs using a microfluidic chip, a tool commonly associated with the field of medical diagnostics. The process may reduce the cost and time of analyzing bitumen-gas interaction in heavy oil and bitumen reservoirs.

Dr. David Sinton, Professor with the Department of Mechanical and Industrial Engineering at the University of Toronto, and postdoctoral researcher Dr. Hossein Fadaei are using the chips to examine the way highly pressurized CO2 behaves when injected into bitumen. The new method, reported in the journal Energy & Fuels, could streamline the way fossil energy companies measure the diffusion of gases in heavier oils like bitumen.

"To my knowledge, this is the first application of microfluidics in the study of gas-bitumen diffusion," says Sinton. His project was funded in part by Carbon Management Canada, a national Networks of Centres of Excellence funding research to reduce CO2 emissions in the fossil energy industry and other large-scale emitters.

Bitumen and heavy oil are difficult to extract from reservoirs because they are thick and do not flow easily. There are several methods of extraction, one of which uses CO2-rich gas injections which helps liquify the bitumen for easier extraction. This process can supplement the steam-injection method which requires heavy inputs of energy and water, and it presents opportunities for sequestration of CO2 in the reservoir.

But, says Sinton, before companies pump CO2 into reservoirs they need to first determine how the CO2 and oil will behave under specific pressures and in specific rock formations. Conventional methods of analysis are conducted using about .5 L of bitumen and a process that can take hours or even days for a single test result.

Sinton and his colleagues use a small glass microchip to replicate a pore within a rock reservoir. The channels in the pore are 50 microns wide, or about half the diameter of a human hair. The device is initially filled with CO2 at low pressure and a small sample of bitumen is injected into the centre of the chip. High pressure CO2 is then injected at both ends of the chip and the swelling of the oil is measured over time.

"This takes 10 minutes and uses a nanoliter plug of sample. If you can do a test in a few minutes and perform many tests in parallel, that's a lot cheaper," he points out. "The experimental setup is also quite simple compared to existing methods."

The method developed by Sinton shows potential as a rapid, reliable approach that could be used by both researchers and the oil and gas industry. And because it uses such small samples, the method could also be employed using hazardous solvents.

Next steps involve studying many types of oil or combinations of diffusion gases at one time in one chip; expanding temperature and pressure ranges of tests to match the variety of conditions found down-hole and in bitumen processing, and adapting the method to work with less viscous oils and other fluids such as brine. Diffusion of CO2 into brine at high pressures is of particular interest for carbon sequestration applications.

Sinton is actively looking for industry partners. For information, he can be reached at sinton@mie.utoronto.ca.

Media Contact:

Ruth Klinkhammer,
Communications Director
Carbon Management Canada
403 210-7879
ruth.klinkhammer@cmc-nce.ca
Dr. David Sinton
SintonLab, University of Toronto
sinton@mie.utoronto.ca
About Carbon Management Canada (www.cmc-nce.ca)
Carbon Management Canada, a federal Networks of Centres of Excellence, is a national research network supported by the Canadian and Alberta governments as well as industry. CMC comprises over 150 academic researchers in 25 Canadian universities, all working to develop the technologies, the knowledge and the personnel to reduce carbon emissions in the fossil energy industry and other large-scale emitters. CMC currently funds 36 research projects for a total of $18 million.

Ruth Klinkhammer | EurekAlert!
Further information:
http://www.cmc-nce.ca

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>