Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Use of microfluidic chips a first in bitumen-gas analysis

29.02.2012
Process could save time and money for oil/gas industry

A University of Toronto research team has developed a process to analyze the behavior of bitumen in reservoirs using a microfluidic chip, a tool commonly associated with the field of medical diagnostics. The process may reduce the cost and time of analyzing bitumen-gas interaction in heavy oil and bitumen reservoirs.

Dr. David Sinton, Professor with the Department of Mechanical and Industrial Engineering at the University of Toronto, and postdoctoral researcher Dr. Hossein Fadaei are using the chips to examine the way highly pressurized CO2 behaves when injected into bitumen. The new method, reported in the journal Energy & Fuels, could streamline the way fossil energy companies measure the diffusion of gases in heavier oils like bitumen.

"To my knowledge, this is the first application of microfluidics in the study of gas-bitumen diffusion," says Sinton. His project was funded in part by Carbon Management Canada, a national Networks of Centres of Excellence funding research to reduce CO2 emissions in the fossil energy industry and other large-scale emitters.

Bitumen and heavy oil are difficult to extract from reservoirs because they are thick and do not flow easily. There are several methods of extraction, one of which uses CO2-rich gas injections which helps liquify the bitumen for easier extraction. This process can supplement the steam-injection method which requires heavy inputs of energy and water, and it presents opportunities for sequestration of CO2 in the reservoir.

But, says Sinton, before companies pump CO2 into reservoirs they need to first determine how the CO2 and oil will behave under specific pressures and in specific rock formations. Conventional methods of analysis are conducted using about .5 L of bitumen and a process that can take hours or even days for a single test result.

Sinton and his colleagues use a small glass microchip to replicate a pore within a rock reservoir. The channels in the pore are 50 microns wide, or about half the diameter of a human hair. The device is initially filled with CO2 at low pressure and a small sample of bitumen is injected into the centre of the chip. High pressure CO2 is then injected at both ends of the chip and the swelling of the oil is measured over time.

"This takes 10 minutes and uses a nanoliter plug of sample. If you can do a test in a few minutes and perform many tests in parallel, that's a lot cheaper," he points out. "The experimental setup is also quite simple compared to existing methods."

The method developed by Sinton shows potential as a rapid, reliable approach that could be used by both researchers and the oil and gas industry. And because it uses such small samples, the method could also be employed using hazardous solvents.

Next steps involve studying many types of oil or combinations of diffusion gases at one time in one chip; expanding temperature and pressure ranges of tests to match the variety of conditions found down-hole and in bitumen processing, and adapting the method to work with less viscous oils and other fluids such as brine. Diffusion of CO2 into brine at high pressures is of particular interest for carbon sequestration applications.

Sinton is actively looking for industry partners. For information, he can be reached at sinton@mie.utoronto.ca.

Media Contact:

Ruth Klinkhammer,
Communications Director
Carbon Management Canada
403 210-7879
ruth.klinkhammer@cmc-nce.ca
Dr. David Sinton
SintonLab, University of Toronto
sinton@mie.utoronto.ca
About Carbon Management Canada (www.cmc-nce.ca)
Carbon Management Canada, a federal Networks of Centres of Excellence, is a national research network supported by the Canadian and Alberta governments as well as industry. CMC comprises over 150 academic researchers in 25 Canadian universities, all working to develop the technologies, the knowledge and the personnel to reduce carbon emissions in the fossil energy industry and other large-scale emitters. CMC currently funds 36 research projects for a total of $18 million.

Ruth Klinkhammer | EurekAlert!
Further information:
http://www.cmc-nce.ca

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>